Brassinolide

Last updated
Brassinolide
Brassinolide2.svg
Names
IUPAC name
(22R,23R)-2α,3α,22,23-Tetrahydroxy-6,7-seco-5α-campestano-6,7-lactone
Systematic IUPAC name
(1R,3aS,3bS,6aS,8S,9R,10aR,10bS,12aS)-1-[(2S,3R,4R,5S)-3,4-Dihydroxy-5,6-dimethylheptan-2-yl]-8,9-dihydroxy-10a,12a-dimethylhexadecahydro-6H-indeno[4,5-d][2]benzoxepin-6-one
Other names
2,3,22,23-Tetrahydroxy-β-homo-7-oxaergostan-6-one
Identifiers
3D model (JSmol)
3633298
ChEBI
ChemSpider
EC Number
  • 688-467-2
KEGG
PubChem CID
UNII
  • InChI=1S/C28H48O6/c1-14(2)15(3)24(31)25(32)16(4)18-7-8-19-17-13-34-26(33)21-11-22(29)23(30)12-28(21,6)20(17)9-10-27(18,19)5/h14-25,29-32H,7-13H2,1-6H3/t15-,16-,17-,18+,19-,20-,21+,22-,23+,24+,25+,27+,28+/m0/s1 Yes check.svgY
    Key: IXVMHGVQKLDRKH-KNBKMWSGSA-N Yes check.svgY
  • InChI=1/C28H48O6/c1-14(2)15(3)24(31)25(32)16(4)18-7-8-19-17-13-34-26(33)21-11-22(29)23(30)12-28(21,6)20(17)9-10-27(18,19)5/h14-25,29-32H,7-13H2,1-6H3/t15-,16-,17-,18+,19-,20-,21+,22-,23+,24+,25+,27+,28+/m0/s1
    Key: IXVMHGVQKLDRKH-KNBKMWSGBW
  • O=C3OC[C@H]2[C@@H]1CC[C@@H]([C@@]1(C)CC[C@@H]2[C@@]4(C)C[C@@H](O)[C@@H](O)C[C@H]34)[C@H](C)[C@@H](O)[C@H](O)[C@@H](C)C(C)C
Properties
C28H48O6
Molar mass 480.686 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Brassinolide is a plant hormone. The first isolated brassinosteroid, it was discovered when it was shown that pollen from rapeseed (Brassica napus) could promote stem elongation and cell division. [1] The biologically active component was isolated and named brassinolide. [2]

Contents

Biosynthesis

The production of brassinolide begins with a closely related sterol called campesterol, which is found in the cell membrane. Initially, it is reduced by an enzyme called DET2. This is followed by a series of oxidation reactions, facilitated by cytochrome P-450 enzymes, which add hydroxyl groups to the molecule. The most biologically significant of these reactions is the C6 oxidation, where a ketone is formed at the C6 carbon position. This single reaction increases the biological activity of the molecule by a factor of 200. Depending on when this C6 oxidation occurs, it is referred to as either the early or late C6 oxidation pathway. Both of these synthetic pathways have been observed in Arabidopsis seedlings. It appears that the late C6 oxidation pathway predominates when the seedlings are exposed to light, while the early pathway is active in the absence of light. If the plant cannot perform C6 oxidation, it results in the "Dwarf phenotype," characterized by severe growth deficits. [3]

Finally, in Arabidopsis, the Baeyer-Villiger lactonization process occurs through the action of the two homologous enzymes CYP85A1 and CYP85A2, leading to the formation of brassinolide. [4] Alternatively, there is a suggested synthetic pathway that starts from cholesterol, giving rise to C27 brassinosteroids. [5]

Mechanism of Action

Signal Transduction

Brassinosteroids, particularly the potent brassinolide, play a crucial role in controlling various plant processes such as germination, aging, and the ability to withstand environmental and biological stresses. [6] Because of this, researchers from around the world have extensively studied model organisms like Catharanthus roseus and Arabidopsis since they were first isolated in 1979. [7] These organisms have been thoroughly examined, from how they receive brassinolide signals to how these signals affect gene expression.

In Arabidopsis, the process begins with the BRI1 receptor (Brassinosteroid Insensitive 1 receptor). This receptor is a type of protein called a leucine-rich receptor kinase and allows brassinolide to attach to it from outside the cell. This binding causes a change in the receptor's shape, and it then interacts with another protein called BRI1 associated receptor kinase 1 (BAK1). This interaction results in both proteins being chemically modified by the addition of phosphate groups in a process called phosphorylation. This, in turn, sets off a chain reaction within the cell, activating some proteins and inhibiting others, including various kinases, phosphatases, and transcription factors. Among the activated proteins are the BR signaling kinases (BSK1, BSK2, and BSK3). Their activation, in turn, activates the phosphatase BRI1 suppressor1 (BSU1), which removes a phosphate group from another protein called brassinosteroid insensitive 2 (BIN2). Removing this phosphate group inactivates BIN2, an important enzyme. As a result, protein phosphotase 2A (PP2A) can remove phosphate groups from two transcription factors, brassinazole-resistant-1 (BZR1) and BRI1-EMS-suppressor-1 (BES1), allowing them to accumulate within the cell's nucleus. There, they control the expression of specific target genes, which are involved in various cellular processes. However, when there's no brassinolide around, a regulator called BRI1 kinase inhibitor (BKI1) prevents the BRI1 receptor from interacting with the BAK1 co-receptor. This prevents the activation of BIN2, causing BZR1 and BES1 to be chemically modified by adding phosphate groups. These modified transcription factors then interact with a protein called 14-3-3 and accumulate in the cell's cytoplasm. Eventually, they are broken down and degraded by a 26S proteasome. In this way, BIN2 kinase serves as an essential negative regulator, dampening the activity of the central transcription factors BES1 and BZR1. [6]

Homeostasis

The two transcription factors BES1 and BZR1 regulate a large number of genes involved in the synthesis of hormones, growth processes and stress response. In addition, there is inhibition of BR biosynthesis, which is evident as early as 15 minutes after brassinolide treatment. [8] Thus, the expression of several biosynthetic genes such as the CPD, DWF4 and CYP85A2 gene is inhibited. [6] These encode for brassinolide biosynthetic enzymes, thus the CPD gene encodes for the cytochrome P450 monooxygenase, which in the late C6 oxidation pathway oxidizes 6-deoxo-cathasterone to 6-deoxo teasterone and in the early C6 oxidation step catalyzes the reaction of cathasterone to teasterone. The enzyme CYP85A2 catalyzes the final biosynthesis step namely the Baeyer-Villiger lactonization of castasterone to brassinolide. This negative feedback loop ensures homeostasis of the hormone brassinolide.

Situation without bonded brassinolide Signaltransduktion1.png
Situation without bonded brassinolide
Brassinolide binds at BRI1 Signaltransduktion2.png
Brassinolide binds at BRI1

Cell growth

Brassinolide induces genes that promote growth such as TCH4 and SAUR-Ac. The gene SAUR-Ac stands for small auxin upregulated RNAs, these belong to the auxin hormone induced genes and provide cell expansion. [9] Thus, SAURs inhibit the phosphatase PP2C-D so that the plasma membrane H+-ATPase is not dephosphorylated. The active phosphorylated proton pump can thus establish an electrochemical gradient in the cell wall. The acidity increases from 6 to 4.5-6 and according to the acid growth hypothesis, it ensures the activation of expansins that cleave the bond of cellulose and hemicellulose. [10] TCH4 was identified as xyloglucan endotransglycosylase (XETs) by sequence analysis and enzyme activity. Its main function is the modification of cell walls. [11] Thus, hemicellulose is composed of xyloglucans, which is built from 1,4-β-linked glucose polymers with lateral 1,6-β-linked xylene residues. [12] The xylogucans can form hydrogen bonds with the cellulose microfibrils and thus structurally stabilize the cell wall. This means XET can modify the cell wall structure. It cleaves xyloglucan molecules, stores some of the energy, and then consumes it again after expansion for linking. Thus, during cell migration expansion, XET can further loosen the cell wall, which provides for the absorption of water. The resulting internal pressure (turgor) is compensated for by the cell wall expansion, so that after re-linking the result is an expanded cell. [11]

Cross talk with other phytohormones

Gibberellin

Brassinolide and gibberellin are both interdependent. BZR1 in Arabidsopsis inhibits DELLAs a negative regulator of gibberellin transduction. Thus, the activity at the promoter for binding is reduced, so gibberellin promotes cell elongation. And DELLAs interaction provides a decrease in BZR1 binding affinity to DNA.

Jasmonic acid

Brassinolide inhibits jasmonic acid (JA) induced pathogen defensive for an ideal trade-off between growth and defense. Here, the transcription factor BES1 inhibits gene expression of PDF1.2a and PDF1.2b to reduce that of antimicrobial protein defensins. Furthermore, BES1 interacts with the transcription factors MYBs and reduces their activity to reduce glucosinolate (GS) biosynthesis, which is an important precursor for defense substances against predators. [13]

Related Research Articles

<span class="mw-page-title-main">Signal transduction</span> Cascade of intracellular and molecular events for transmission/amplification of signals

Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events. Most commonly, protein phosphorylation is catalyzed by protein kinases, ultimately resulting in a cellular response. Proteins responsible for detecting stimuli are generally termed receptors, although in some cases the term sensor is used. The changes elicited by ligand binding in a receptor give rise to a biochemical cascade, which is a chain of biochemical events known as a signaling pathway.

<span class="mw-page-title-main">Kinase</span> Enzyme catalyzing transfer of phosphate groups onto specific substrates

In biochemistry, a kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule. This transesterification produces a phosphorylated substrate and ADP. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and ADP gains a phosphate group. These two processes, phosphorylation and dephosphorylation, occur four times during glycolysis.

<span class="mw-page-title-main">Plant hormone</span> Chemical compounds that regulate plant growth and development

Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.

<span class="mw-page-title-main">Cytokinin</span> Class of plant hormones promoting cell division

Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and leaf senescence.

Gibberellins (GAs) are plant hormones that regulate various developmental processes, including stem elongation, germination, dormancy, flowering, flower development, and leaf and fruit senescence. GAs are one of the longest-known classes of plant hormone. It is thought that the selective breeding of crop strains that were deficient in GA synthesis was one of the key drivers of the "green revolution" in the 1960s, a revolution that is credited to have saved over a billion lives worldwide.

<span class="mw-page-title-main">Paracrine signaling</span> Form of localized cell signaling

In cellular biology, paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance, as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the circulatory system; juxtacrine interactions; and autocrine signaling. Cells that produce paracrine factors secrete them into the immediate extracellular environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain.

<span class="mw-page-title-main">Jasmonate</span> Lipid-based plant hormones

Jasmonate (JA) and its derivatives are lipid-based plant hormones that regulate a wide range of processes in plants, ranging from growth and photosynthesis to reproductive development. In particular, JAs are critical for plant defense against herbivory and plant responses to poor environmental conditions and other kinds of abiotic and biotic challenges. Some JAs can also be released as volatile organic compounds (VOCs) to permit communication between plants in anticipation of mutual dangers.

<span class="mw-page-title-main">Brassinosteroid</span> Class of plant hormones

Brassinosteroids are a class of polyhydroxysteroids that have been recognized as a sixth class of plant hormones and may have utility as anticancer drugs for treating endocrine-responsive cancers by inducing apoptosis of cancer cells and inhibiting cancerous growth. These brassinosteroids were first explored during the 1970s when Mitchell et al. reported promotion in stem elongation and cell division by the treatment of organic extracts of rapeseed pollen. Brassinolide was the first brassinosteroid to be isolated in 1979, when pollen from Brassica napus was shown to promote stem elongation and cell divisions, and the biologically active molecule was isolated. The yield of brassinosteroids from 230 kg of Brassica napus pollen was only 10 mg. Since their discovery, over 70 BR compounds have been isolated from plants.

<span class="mw-page-title-main">Abscisic acid</span> Plant hormone

Abscisic acid is a plant hormone. ABA functions in many plant developmental processes, including seed and bud dormancy, the control of organ size and stomatal closure. It is especially important for plants in the response to environmental stresses, including drought, soil salinity, cold tolerance, freezing tolerance, heat stress and heavy metal ion tolerance.

A biochemical cascade, also known as a signaling cascade or signaling pathway, is a series of chemical reactions that occur within a biological cell when initiated by a stimulus. This stimulus, known as a first messenger, acts on a receptor that is transduced to the cell interior through second messengers which amplify the signal and transfer it to effector molecules, causing the cell to respond to the initial stimulus. Most biochemical cascades are series of events, in which one event triggers the next, in a linear fashion. At each step of the signaling cascade, various controlling factors are involved to regulate cellular actions, in order to respond effectively to cues about their changing internal and external environments.

In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in fat. Lipogenesis encompasses both fatty acid and triglyceride synthesis, with the latter being the process by which fatty acids are esterified to glycerol before being packaged into very-low-density lipoprotein (VLDL). Fatty acids are produced in the cytoplasm of cells by repeatedly adding two-carbon units to acetyl-CoA. Triacylglycerol synthesis, on the other hand, occurs in the endoplasmic reticulum membrane of cells by bonding three fatty acid molecules to a glycerol molecule. Both processes take place mainly in liver and adipose tissue. Nevertheless, it also occurs to some extent in other tissues such as the gut and kidney. A review on lipogenesis in the brain was published in 2008 by Lopez and Vidal-Puig. After being packaged into VLDL in the liver, the resulting lipoprotein is then secreted directly into the blood for delivery to peripheral tissues.

In biology, cell signaling is the process by which a cell interacts with itself, other cells, and the environment. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes.

<span class="mw-page-title-main">Systemin</span> Plant peptide hormone

Systemin is a plant peptide hormone involved in the wound response in the family Solanaceae. It was the first plant hormone that was proven to be a peptide having been isolated from tomato leaves in 1991 by a group led by Clarence A. Ryan. Since then, other peptides with similar functions have been identified in tomato and outside of the Solanaceae. Hydroxyproline-rich glycopeptides were found in tobacco in 2001 and AtPeps were found in Arabidopsis thaliana in 2006. Their precursors are found both in the cytoplasm and cell walls of plant cells, upon insect damage, the precursors are processed to produce one or more mature peptides. The receptor for systemin was first thought to be the same as the brassinolide receptor but this is now uncertain. The signal transduction processes that occur after the peptides bind are similar to the cytokine-mediated inflammatory immune response in animals. Early experiments showed that systemin travelled around the plant after insects had damaged the plant, activating systemic acquired resistance, now it is thought that it increases the production of jasmonic acid causing the same result. The main function of systemins is to coordinate defensive responses against insect herbivores but they also affect plant development. Systemin induces the production of protease inhibitors which protect against insect herbivores, other peptides activate defensins and modify root growth. They have also been shown to affect plants' responses to salt stress and UV radiation. AtPEPs have been shown to affect resistance against oomycetes and may allow A. thaliana to distinguish between different pathogens. In Nicotiana attenuata, some of the peptides have stopped being involved in defensive roles and instead affect flower morphology.

The transforming growth factor beta (TGFB) signaling pathway is involved in many cellular processes in both the adult organism and the developing embryo including cell growth, cell differentiation, cell migration, apoptosis, cellular homeostasis and other cellular functions. The TGFB signaling pathways are conserved. In spite of the wide range of cellular processes that the TGFβ signaling pathway regulates, the process is relatively simple. TGFβ superfamily ligands bind to a type II receptor, which recruits and phosphorylates a type I receptor. The type I receptor then phosphorylates receptor-regulated SMADs (R-SMADs) which can now bind the coSMAD SMAD4. R-SMAD/coSMAD complexes accumulate in the nucleus where they act as transcription factors and participate in the regulation of target gene expression.

The Akt signaling pathway or PI3K-Akt signaling pathway is a signal transduction pathway that promotes survival and growth in response to extracellular signals. Key proteins involved are PI3K and Akt.

BRI1-associated receptor kinase 1 is an important plant protein that has diverse functions in plant development.

Feronia, also known as FER or protein Sirene, is a recognition receptor kinase found in plants. FER plays a significant part in the plant immune system as a receptor kinase which assists in immune signaling within plants, plant growth, and plant reproduction. FER is regulated by the Rapid Alkalinization Factor (RALF). FER regulates growth in normal environments but it is most beneficial in stressful environments as it helps to initiate immune signaling. FER can also play a role in reproduction in plants by participating in the communication between the female and male cells. FER is found in and can be studied in the organism Arabidopsis thaliana.

<span class="mw-page-title-main">Brassinosteroid insensitive-1</span>

Brassinosteroid insensitive 1 (BRI1) is the major receptor of the plant hormone brassinosteroid. It plays very important roles in plant development, especially in the control of cell elongation and for the tolerance of environmental stresses. BRI1 enhances cell elongation, promotes pollen development, controls vasculature development and promotes chilling and freezing tolerance. BRI1 is one of the most well studied hormone receptors and it acts a model for the study of membrane-bound receptors in plants.

<span class="mw-page-title-main">Ethylene (plant hormone)</span> Alkene gas naturally regulating the plant growth

Ethylene (CH
2
=CH
2
) is an unsaturated hydrocarbon gas (alkene) acting as a naturally occurring plant hormone. It is the simplest alkene gas and is the first gas known to act as hormone. It acts at trace levels throughout the life of the plant by stimulating or regulating the ripening of fruit, the opening of flowers, the abscission (or shedding) of leaves and, in aquatic and semi-aquatic species, promoting the 'escape' from submergence by means of rapid elongation of stems or leaves. This escape response is particularly important in rice farming. Commercial fruit-ripening rooms use "catalytic generators" to make ethylene gas from a liquid supply of ethanol. Typically, a gassing level of 500 to 2,000 ppm is used, for 24 to 48 hours. Care must be taken to control carbon dioxide levels in ripening rooms when gassing, as high temperature ripening (20 °C; 68 °F) has been seen to produce CO2 levels of 10% in 24 hours.

Calcium signaling in <i>Arabidopsis</i>

Calcium signaling in Arabidopsis is a calcium mediated signalling pathway that Arabidopsis plants use in order to respond to a stimuli. In this pathway, Ca2+ works as a long range communication ion, allowing for rapid communication throughout the plant. Systemic changes in metabolites such as glucose and sucrose takes a few minutes after the stimulus, but gene transcription occurs within seconds. Because hormones, peptides and RNA travel through the vascular system at lower speeds than the plants response to wounds, indicates that Ca2+ must be involved in the rapid signal propagation. Instead of local communication to nearby cells and tissues, Ca2+ uses mass flow within the vascular system to help with rapid transport throughout the plant. Ca2+ moving through the xylem and phloem acts through a “calcium signature” receptor system in cells where they integrate the signal and respond with the activation of defense genes. These calcium signatures encode information about the stimulus allowing the response of the plant to cater towards the type of stimulus.

References

  1. Mitchell JW, Mandava N, Worley JF, Plimmer JR, Smith MV (1970). "Brassins--a new family of plant hormones from rape pollen". Nature. 225 (5237): 1065–6. Bibcode:1970Natur.225.1065M. doi:10.1038/2251065a0. PMID   16056912. S2CID   4116426.
  2. Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979). "Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen". Nature. 281 (5728): 216–217. Bibcode:1979Natur.281..216G. doi:10.1038/281216a0. S2CID   4335601.
  3. Gerard J. Bishop, Takahito Nomura, Takao Yokota, Kate Harrison, Takahiro Noguchi, Shozo Fujioka, Suguru Takatsuto, Jonathan D. G. Jones, Yuji Kamiya (1999), "The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis", Proceedings of the National Academy of Sciences , vol. 96, no. 4, pp. 1761–1766, Bibcode:1999PNAS...96.1761B, doi: 10.1073/pnas.96.4.1761 , PMC   15587 , PMID   9990098 {{citation}}: CS1 maint: multiple names: authors list (link)
  4. Tae-Wuk Kim ,Jung-Yun Hwang, Young-Soo Kim, Se-Hwan Joo, Soo Chul Chang, June Seung Lee, Suguru Takatsuto, Seopng-Ki Kim (2005), "Arabidopsis CYP85A2, a Cytochrom P450, mediates the Baeyer-Villiger Oxidation of Castasterone to Brassinolide in Brassinosteroid Biosynthesis", The Plant Cell, vol. 17, no. 8, pp. 2397–2412, doi: 10.1105/tpc.105.033738 , PMC   1182497 , PMID   16024588 {{citation}}: CS1 maint: multiple names: authors list (link)
  5. Tae-Wuk Kim, Soo Chul Chang, June Seung Lee, Suguru Takatsuto, Takao Yokota, Seong-Ki Kim (2004), "Novel Biosynthetic Pathway of Castasterone from Cholesterol in Tomato", Plant Physiology, vol. 135, no. 3, pp. 1231–1242, doi: 10.1104/pp.104.043588 , PMC   519043 , PMID   15247383 {{citation}}: CS1 maint: multiple names: authors list (link)
  6. 1 2 3 Cécile Vriet, Eugenia Russinova, Christophe Reuzeau (2013), "From Squalene to Brassinolide: The Steroid Metabolic and Signaling Pathways across the Plant Kingdom", Molecular Plant, vol. 6, no. 6, pp. 1738–1757, doi: 10.1093/mp/sst096 , PMID   23761349 {{citation}}: CS1 maint: multiple names: authors list (link)
  7. Gerald J. Bishop, Csaba Koncz (2002), "Brassinosteroids and Plant Steroid Hormone Signaling", The Plant Cell, vol. 14, no. Suppl, pp. S97–S110, doi: 10.1105/tpc.001461 , PMC   151250 , PMID   12045272
  8. Jun-Xian He, Joshua M. Gendron, Yu Sun, Srinivas S. L. Gampala, Nathan Gendron, Catherine Qing Sun, Zhi-Yong Wang (2005), "BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses", Science , vol. 307, no. 5715, pp. 1634–1638, Bibcode:2005Sci...307.1634H, doi:10.1126/science.1107580, PMC   2925132 , PMID   15681342 {{citation}}: CS1 maint: multiple names: authors list (link)
  9. Angela K. Spartz, Hong Ren, Mee Yeon Park, Kristin N. Grandt, Sang Ho Lee, Angus S. Murphy, Michael R. Sussman, Paul J. Overvoorde, William M. Gray (2014), "SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+-ATPases to Promote Cell Expansion in Arabidopsis", The Plant Cell, vol. 26, no. 5, pp. 2129–2142, doi: 10.1105/tpc.114.126037 , PMC   4079373 , PMID   24858935 {{citation}}: CS1 maint: multiple names: authors list (link)
  10. Pyae Phyo, Ying Gu, Mei Hong (2019), "Impact of acidic pH on plant cell wall polysaccharide structure and dynamics: insights into the mechanism of acid growth in plants from solid-state NMR", Cellulose , vol. 26, no. 1, pp. 291–304, doi:10.1007/s10570-018-2094-7, hdl: 1721.1/131772 , S2CID   106390488 {{citation}}: CS1 maint: multiple names: authors list (link)
  11. 1 2 Wei Xu, Mary M. Purugganan, Diana H. Polisensky, Danuta M. Antosiewicz, Stephen C. Fry, Janet Braam (1995), "Arabidopsis TCH4, Regulated by Hormones and the Environment, Encodes a Xyloglucan Endotransglycosylase", The Plant Cell, vol. 7, no. 10, pp. 1555–1567, doi:10.2307/3870019, JSTOR   3870019 {{citation}}: CS1 maint: multiple names: authors list (link)
  12. M. M. Purugganan, J. Braam, S. C. Fry (1997), "The Arabidopsis TCH4 Xyloglucan Endotransglycosylase (Substrate Specificity, pH Optimum, and Cold Tolerance)", Plant Physiology, vol. 115, no. 1, pp. 181–190, doi: 10.1104/pp.115.1.181 , PMC   158473 , PMID   9306698 {{citation}}: CS1 maint: multiple names: authors list (link)
  13. Alfredo Kono, Yanhai Yin (2020), "Updates on BES1/BZR1 Regulatory Networks Coordinating Plant Growth and Stress Responses", Frontiers in Plant Science, vol. 11, doi: 10.3389/fpls.2020.617162 , PMC   7744466 , PMID   33343611