CAPE-1

Last updated
CAPE-1
Mission typeTechnology
Operator University of Louisiana at Lafayette
COSPAR ID 2007-012P
SATCAT no. 31130
Mission duration15 years and 29 days (in progress)
Spacecraft properties
Spacecraft type1U CubeSat
Launch mass0.879 kg (1.94 lb)
Start of mission
Launch date17 April 2007, 06:46 (2007-04-17UTC06:46Z) UTC
Rocket Dnepr
Launch site Baikonur 109/95
Contractor ISC Kosmotras
Orbital parameters
Reference system Geocentric
Regime Low Earth
Eccentricity 0,01036
Perigee altitude 646 km (401 mi)
Apogee altitude 793 km (493 mi)
Inclination 98.1°
Period 99.2 minutes
Epoch 17 April 2007 [1]
 

CAPE-1(Cajun Advanced Picosatellite Experiment) is an amateur miniaturized satellite developed by students at the University of Louisiana at Lafayette. The CubeSat was launched successfully into orbit at the Baikonur Cosmodrome in Kazakhstan in April 2007 after a delay of several weeks. [2]

Contents

An amateur radio frequency in the 70-centimeter band was used during the satellite's operation. Intermittent continuous wave and AX.25 telemetry beacons were sent at one watt with the call sign K5USL. [2] CAPE-1 has ceased operation, and is succeeded by the CAPE-2 picosatellite, a 1U Cubesat operating on the 2-meter and 70-centimeter bands.

See also

Related Research Articles

AMSAT is a name for amateur radio satellite organizations worldwide, but in particular the Radio Amateur Satellite Corporation (AMSAT) with headquarters at Washington, D.C. AMSAT organizations design, build, arrange launches for, and then operate (command) satellites carrying amateur radio payloads, including the OSCAR series of satellites. Other informally affiliated national organizations exist, such as AMSAT Germany (AMSAT-DL) and AMSAT Japan (JAMSAT).

CubeSat Miniature satellite in 10cm cube modules

A CubeSat is a class of miniaturized satellite based around a form factor consisting of 10 cm (3.9 in) cubes. CubeSats have a mass of no more than 2 kg (4.4 lb) per unit, and often use commercial off-the-shelf (COTS) components for their electronics and structure. CubeSats are put into orbit by deployers on the International Space Station, or launched as secondary payloads on a launch vehicle. As of August 2021, more than 1,600 CubeSats have been launched.

Small satellite Satellites of low mass and size, usually under 500 kg

A small satellite, miniaturized satellite, or smallsat is a satellite of low mass and size, usually under 1,200 kg (2,600 lb). While all such satellites can be referred to as "small", different classifications are used to categorize them based on mass. Satellites can be built small to reduce the large economic cost of launch vehicles and the costs associated with construction. Miniature satellites, especially in large numbers, may be more useful than fewer, larger ones for some purposes – for example, gathering of scientific data and radio relay. Technical challenges in the construction of small satellites may include the lack of sufficient power storage or of room for a propulsion system.

nCube (satellite)

NCube was a series of two Norwegian satellites, made by students at several Norwegian universities and university colleges. Due to problems during launch (NCube-1) and deployment into orbit (NCube-2), neither of the satellites became operational.

The Multi-Application Survivable Tether (MAST) experiment was an in-space investigation designed to use CubeSat spacecraft connected by tethers to better understand the survivability of tethers in space. It was launched as a secondary payload on a Dnepr rocket on 17 April 2007 into a 98°, 647 x 782 km orbit. The MAST payload incorporated three picosatellites, named "Ralph," "Ted," and "Gadget," which were intended to separate and deploy a 1 km (0.62 mi) tether. The experiment hardware was designed under a NASA Small Business Technology Transfer (STTR) collaboration between Tethers Unlimited, Inc. (TUI) and Stanford University, with TUI developing the tether, tether deployer, tether inspection subsystem, satellite avionics, and software, and Stanford students developing the satellite structures and assisting with the avionics design.

Compass-1

Compass-1 is a German amateur CubeSat picosatellite, built and operated in the late 2000s by Aachen University of Applied Science. It was launched by the Indian Space Research Organisation, aboard a PSLV rocket as a secondary payload to the CartoSat-2A primary spacecraft on 28 April 2008. It was launched into a Geocentric orbit with an altitude of 597 km. Its primary mission is remote sensing; however, it also contains some technology demonstration experiments regarding the use of small satellites and GPS tracking.

The Space Engineering EDucation Satellite 2 (SEEDS-2) is a Japanese amateur CubeSat picosatellite, built and operated by Nihon University. It was launched by the Indian Space Research Organisation, aboard a PSLV rocket, on 28 April 2008. It was built to replace the SEEDS satellite, which was lost in a launch failure on a Dnepr rocket in July 2006.

Explorer-1 [Prime], also known as E1P and Electra, was a CubeSat-class picosatellite built by the Space Science and Engineering Laboratory (SSEL) at Montana State University. It was launched aboard a Taurus-XL rocket from Vandenberg Air Force Base, California on 4 March 2011, but failed to achieve orbit after the rocket malfunctioned.

Soil Moisture Active Passive

Soil Moisture Active Passive (SMAP) is a NASA environmental monitoring satellite launched on 31 January 2015. It was one of the first Earth observation satellites developed by NASA in response to the National Research Council's Decadal Survey.

AeroCube-3 is a single-unit CubeSat which was built and is being operated by The Aerospace Corporation, at El Segundo, California. It is the third AeroCube picosatellite, following on from AeroCube-1, which was lost in a launch failure in 2006, and AeroCube-2 which was successfully launched in 2007 but failed immediately after launch. Compared to its predecessors it contains several improvements in its infrastructure, including a redesigned power system, replacing the older system which was responsible for the loss of AeroCube-2. Its development was funded by the United States Air Force Space and Missile Systems Center, at Los Angeles Air Force Base.

SSETI Express was the first spacecraft to be designed and built by European students and was launched by the European Space Agency. SSETI Express is a small spacecraft, similar in size and shape to a washing machine. On board the student-built spacecraft were three CubeSat picosatellites, extremely small satellites weighing around one kg each. These were deployed one hour and forty minutes after launch. Twenty-one university groups, working from locations spread across Europe and with very different cultural backgrounds, worked together via the internet to jointly create the satellite. The expected lifetime of the mission was planned to be 2 months. SSETI Express encountered an unusually fast mission development: less than 18 months from kick-off in January 2004 to flight-readiness.

Technology Education Satellite (TechEdSat) is a class of CubeSats built by San Jose State University and University of Idaho students in partnership with NASA's Ames Research Center. These satellites have tested communication technology for smallsats, and have contributed to the development of the Small Payload Quick Return (SPQR) concept.

STRaND-1 is a failed 3U CubeSat developed by Surrey University's Surrey Space Centre (SSC) and Surrey Satellite Technology (SSTL). The 4.3 kg (9.5 lb) nanosatellite was launched into orbit on board a PSLV Rocket from India on February 25, 2013, Smartphones have flown in space before inside the International Space Station, and the computer from a PDA launched inside two Japanese CubeSats in 2006 and 2008.

e-st@r

e-st@r is a miniaturised satellite built by the Politecnico di Torino. It is a 1U CubeSat design with a 10 cm side and a mass not exceeding 1.33 kg.

Tancredo-1 was a Brazilian picosatellite. It was a TubeSat which was developed by the students from the school Tancredo Almeida Neves, in Ubatuba (SP), with support for the picosat platform made by Instituto Nacional de Pesquisas Espaciais (INPE), adapting and integration to launch provided by TuPOD from Italian company GAUSS Srl and by Agência Espacial Brasileira (AEB).

Fox-1D, AO-92 or AMSAT OSCAR 92 is an American amateur radio satellite. Fox-1D is a 1U CubeSat developed and built by AMSAT-NA. Fox-1D carries a single-channel transponder for mode U/V in FM. Fox-1D has an L-band converter, which allows the FM transponder to be switched on an uplink in the 23 centimetres (9.1 in) band.

ParkinsonSAT, PSat or Naval Academy OSCAR 84 is a U.S. technology demonstration satellite and an amateur radio satellite for Packet Radio. It was built at the U.S. Naval Academy and was planned as a double satellite. The name ParkinsonSAT was chosen in honor of Bradford Parkinson, the father of the GPS system. After successful launch, the satellite was assigned the OSCAR number 84.

DAVE (CP-7), or Damping And Vibrations Experiment, is a technology demonstration nanosatellite developed by the PolySat laboratory at California Polytechnic State University, San Luis Obispo, in collaboration with Northrop Grumman. The spacecraft adheres to the 1U CubeSat standard and is currently in a 93° inclination orbit. DAVE will study the vibration of metal beams damped with tungsten particles in a micro-gravity environment. The test elements are driven by a piezoelectric actuator, and vibration data is collected via an accelerometer at the tip of each beam. DAVE was launched into a high-inclination orbit as a secondary payload on the final flight of the Delta II launch vehicle as part of the ELaNa-18 ride-share mission with NASA's ICESat-2 primary payload. The launch occurred out of Vandenberg Air Force Base, California on September 15 at 6:02 AM local time. DAVE was deployed alongside three other CubeSat spacecraft: University of Central Florida's SurfSat, and two ELFIN spacecraft from University of California, Los Angeles.

Weber-OSCAR 18 is an American amateur radio satellite.

CAPE-2(Cajun Advanced Picosatellite Experiment 2), or Louisiana-OSCAR 75, was an American amateur miniaturized satellite developed by students at the University of Louisiana at Lafayette.

References

  1. NASA Goddard Space Flight Center. "Cape 1". NASA Space Science Data Coordinated Archive. Retrieved 15 May 2022.
  2. 1 2 "The ARRL Letter". American Radio Relay League. 2007. Retrieved 2010-07-30.