Cahen's constant

Last updated

In mathematics, Cahen's constant is defined as the value of an infinite series of unit fractions with alternating signs:

Contents

(sequence A118227 in the OEIS )

Here denotes Sylvester's sequence, which is defined recursively by

Combining these fractions in pairs leads to an alternative expansion of Cahen's constant as a series of positive unit fractions formed from the terms in even positions of Sylvester's sequence. This series for Cahen's constant forms its greedy Egyptian expansion:

This constant is named after Eugène Cahen  [ fr ] (also known for the Cahen–Mellin integral), who was the first to introduce it and prove its irrationality. [1]

Continued fraction expansion

The majority of naturally occurring [2] mathematical constants have no known simple patterns in their continued fraction expansions. [3] Nevertheless, the complete continued fraction expansion of Cahen's constant is known: it is

where the sequence of coefficients

0, 1, 1, 1, 2, 3, 14, 129, 25298, 420984147, ... (sequence A006279 in the OEIS)

is defined by the recurrence relation

All the partial quotients of this expansion are squares of integers. Davison and Shallit made use of the continued fraction expansion to prove that is transcendental. [4]

Alternatively, one may express the partial quotients in the continued fraction expansion of Cahen's constant through the terms of Sylvester's sequence: To see this, we prove by induction on that . Indeed, we have , and if holds for some , then

where we used the recursion for in the first step respectively the recursion for in the final step. As a consequence, holds for every , from which it is easy to conclude that

.

Best approximation order

Cahen's constant has best approximation order . That means, there exist constants such that the inequality has infinitely many solutions , while the inequality has at most finitely many solutions . This implies (but is not equivalent to) the fact that has irrationality measure 3, which was first observed by Duverney & Shiokawa (2020).

To give a proof, denote by the sequence of convergents to Cahen's constant (that means, ). [5]

But now it follows from and the recursion for that

for every . As a consequence, the limits

and

(recall that ) both exist by basic properties of infinite products, which is due to the absolute convergence of . Numerically, one can check that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle 0 < \alpha < 1 < \beta < 2}. Thus the well-known inequality

yields

and

for all sufficiently large . Therefore has best approximation order 3 (with ), where we use that any solution to

is necessarily a convergent to Cahen's constant.

Notes

  1. Cahen (1891).
  2. A number is said to be naturally occurring if it is *not* defined through its decimal or continued fraction expansion. In this sense, e.g., Euler's number is naturally occurring.
  3. Borwein et al. (2014), p. 62.
  4. Davison & Shallit (1991).
  5. Sloane, N. J. A. (ed.), "SequenceA006279", The On-Line Encyclopedia of Integer Sequences , OEIS Foundation

Related Research Articles

<span class="mw-page-title-main">Series (mathematics)</span> Infinite sum

In mathematics, a series is, roughly speaking, the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

<span class="mw-page-title-main">Euler's constant</span> Relates logarithm and harmonic series

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

In mathematics, a generating function is a way of encoding an infinite sequence of numbers by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

<span class="mw-page-title-main">Limit of a sequence</span> Value to which tends an infinite sequence

In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol. If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

In mathematics, the limit of a sequence of sets is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set and (2) by convergence of a sequence of indicator functions which are themselves real-valued. As is the case with sequences of other objects, convergence is not necessary or even usual.

In mathematics, smooth functions and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below.

In number theory, Aleksandr Yakovlevich Khinchin proved that for almost all real numbers x, coefficients ai of the continued fraction expansion of x have a finite geometric mean that is independent of the value of x and is known as Khinchin's constant.

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

<span class="mw-page-title-main">Integral test for convergence</span> Test for infinite series of monotonous terms for convergence

In mathematics, the integral test for convergence is a method used to test infinite series of monotonous terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up years later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function.

<span class="mw-page-title-main">Lemniscate constant</span> Ratio of the perimeter of Bernoullis lemniscate to its diameter

In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

The Engel expansion of a positive real number x is the unique non-decreasing sequence of positive integers such that

Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proved by Euclid in his work Elements. There are several proofs of the theorem.

In mathematical area of combinatorics, the q-Pochhammer symbol, also called the q-shifted factorial, is the product

In mathematics, a transformation of a sequence's generating function provides a method of converting the generating function for one sequence into a generating function enumerating another. These transformations typically involve integral formulas applied to a sequence generating function or weighted sums over the higher-order derivatives of these functions.

In number theory, specifically in Diophantine approximation theory, the Markov constant of an irrational number is the factor for which Dirichlet's approximation theorem can be improved for .

References