CABP1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | CABP1 , CALBRAIN, HCALB_BR, calcium binding protein 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 605563; MGI: 1352750; HomoloGene: 128292; GeneCards: CABP1; OMA:CABP1 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Calcium binding protein 1 is a protein that in humans is encoded by the CABP1 gene. [5] Calcium-binding protein 1 is a calcium-binding protein [6] discovered in 1999. [7] It has two EF hand motifs and is expressed in neuronal cells in such areas as hippocampus, habenular nucleus of the epithalamus, Purkinje cell layer of the cerebellum, and the amacrine cells and cone bipolar cells of the retina.
Calcium-binding protein 1 which is a neuron-specific member of the calmodulin (CaM) superfamily which modulates Ca2+-dependent activity of inositol trisphosphate receptors (InsP3RS). [8] L-CaBP1 is also associated with the cytoskeleton structures. But the S-CaBP1 is situated in or near the plasma membrane. In brain, CaBp1 is found in the cerebral cortex and hippocampus and in the protein, Cabp1 is found in cone bipolar and amacrine cells. We can also express that CaBP1 may regulate Ca2+ dependent activity of InSP3Rs by promoting structural contacts between suppressor and core domains but has no effect on INsP3 binding to the receptor. CaBP1 contains four EF-hands in two separate domains namely, EF1 and Ef2 is contained in N-domain whereas Ef3 and EF4 is contained in c domain to which Ca2+ binds. [9] Calcium-binding protein 1 (CaBP1) is placed in the lumen of the endoplasmic reticulum.it is relocated outside cells during apoptosis and involved in the phagocytosis of apoptotic cells. [10] CaBP1 [9] and CaM. [11] [12] lobes fold independently. CaBP1-CaM chimeras based on exchange of three elements these are N-lobe, C-lobe and inter lobe linker. Expression of CaBP1 helps to block Ca2+-dependent facilitation of P/Q-type Ca2+ current which is markedly reduced facilitation of synaptic transmission.
Protein that attributes for CABP1 Gene is homodimer. It interacts with ITPR1, ITPR2 and ITPR3 via C-terminus. The binding is calcium dependent and the interaction correlates with calcium concentration. CABP1 also interacts with CACNA1A in the pre and post synaptic membranes via C-terminal calcium binding motif. It also interacts with CACNA1C via C-terminal C and IQ motifs. It interacts with TRPC5 and also interacts with MAP1LC3B via C-terminus and EF-hands 1 and 2 respectively. It interacts with C9orf9. It also interacts NSMF via the central NLF- containing motif region. This interaction occurs in calcium dependent manner after the Synaptic NMDA receptor stimulation and thus this prevents nuclear import of NSMF. [13]
Calcium binding proteins are an important component of calcium mediated cellular signal transduction. This gene encodes a protein that belongs to a subfamily of calcium binding proteins which share similarity to calmodulin. The protein encoded by this gene regulates the gating of voltage-gated calcium ion channels. This protein causes rapid inactivation that is independent of calcium, and does not support Calcium-dependent facilitation. [14] CAbp1 suppresses the inactivated calcium dependent CACNA1D. it also inhibits TRPC5. CABP1 prevents NMDA receptor- induced cellular degeneration. This protein also regulates calcium-dependent activity of inositol 1,4,5-triphosphate receptors, P/Q-type voltage-gated calcium channels, and transient receptor potential channel TRPC5. This gene is predominantly expressed in retina and brain. [5]
CaBP1 And CaM both bind to IQ-domain in the cytoplasmic C-terminal domain. Mutations of the IQ-Domain that weakens this two protein binding, stops the functional effect of CaM but not CaBP1. If the N-terminal domain is deleted it abolishes the effect of CaBP1 prolonging Cav1.2 Ca2+ currents, but spared Ca2+-dependent is inactivated due to CaM [15] overexpressed L-CaBP1 suppresses the rise in [Ca2+] in response to physiological agonists acting on purinergic receptors and thus this inhibition occurs in large part to blockade of release from intracellular Ca2+ stores. The related protein neuronal calcium sensor-1did not get affected on the [Ca2+] responses to agonist stimulation. Measurement of [Ca2+] within the ER of permeabilized PC12 cells demonstrated that LCaBP1 directly inhibited InsP3-mediated Ca2+ release. Expression of L-CaBP1 also help in the inhibition of histamine-induced [Ca2+] oscillations in HeLa cells. L-CaBP1 is able to specifically regulate InsP3 receptor-mediated alterations in [Ca2+] during agonist stimulation.
Cellular expression of caldendrin is restricted to the somatodendritic compartment, with the exception of hypothalamus, where axonal labeling was detected. [16] CAbP1 and CAbP2 contain a consensus sequence for N-terminal myristoylation. Transcription factor binding sites identified by Qiagen in the CABP1 gene promoter include Nkx2-5, RSRFC4, TAL1, and HSF1. CaBP1 interacts with inositol 1,4,5-triphosphate (InsP3) receptors to elicit channel activation when InsP3 is absent.
In schizophrenia, one study demonstrated a decrease in the number of CABP1-expressing cells, specifically in the left dorsolateral prefrontal cortex. This change, however, was compensated on a whole-brain scale by an increase in the protein levels. [17]
Inositol trisphosphate or inositol 1,4,5-trisphosphate abbreviated InsP3 or Ins3P or IP3 is an inositol phosphate signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the plasma membrane, by phospholipase C (PLC). Together with diacylglycerol (DAG), IP3 is a second messenger molecule used in signal transduction in biological cells. While DAG stays inside the membrane, IP3 is soluble and diffuses through the cell, where it binds to its receptor, which is a calcium channel located in the endoplasmic reticulum. When IP3 binds its receptor, calcium is released into the cytosol, thereby activating various calcium regulated intracellular signals.
Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all eukaryotic cells. It is an intracellular target of the secondary messenger Ca2+, and the binding of Ca2+ is required for the activation of calmodulin. Once bound to Ca2+, calmodulin acts as part of a calcium signal transduction pathway by modifying its interactions with various target proteins such as kinases or phosphatases.
Inositol trisphosphate receptor (InsP3R) is a membrane glycoprotein complex acting as a Ca2+ channel activated by inositol trisphosphate (InsP3). InsP3R is very diverse among organisms, and is necessary for the control of cellular and physiological processes including cell division, cell proliferation, apoptosis, fertilization, development, behavior, learning and memory. Inositol triphosphate receptor represents a dominant second messenger leading to the release of Ca2+ from intracellular store sites. There is strong evidence suggesting that the InsP3R plays an important role in the conversion of external stimuli to intracellular Ca2+ signals characterized by complex patterns relative to both space and time, such as Ca2+ waves and oscillations.
Ryanodine receptors form a class of intracellular calcium channels in various forms of excitable animal tissue like muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissues and participate in different signaling pathways involving calcium release from intracellular organelles. The RYR2 ryanodine receptor isoform is the major cellular mediator of calcium-induced calcium release (CICR) in animal cells.
Phosphatidylinositol 4,5-bisphosphate or PtdIns(4,5)P2, also known simply as PIP2 or PI(4,5)P2, is a minor phospholipid component of cell membranes. PtdIns(4,5)P2 is enriched at the plasma membrane where it is a substrate for a number of important signaling proteins. PIP2 also forms lipid clusters that sort proteins.
Calcium/calmodulin-dependent protein kinase type II subunit alpha (CAMKIIα), a.k.a.Ca2+/calmodulin-dependent protein kinase II alpha, is one subunit of CamKII, a protein kinase (i.e., an enzyme which phosphorylates proteins) that in humans is encoded by the CAMK2A gene.
Inositol 1,4,5-trisphosphate receptor type 1 is a protein that in humans is encoded by the ITPR1 gene.
Calcium/calmodulin-dependent protein kinase type II beta chain is an enzyme that in humans is encoded by the CAMK2B gene.
Synaptotagmin-1 is a protein that in humans is encoded by the SYT1 gene.
Inositol (1,4,5) trisphosphate 3-kinase (EC 2.7.1.127), abbreviated here as ITP3K, is an enzyme that facilitates a phospho-group transfer from adenosine triphosphate to 1D-myo-inositol 1,4,5-trisphosphate. This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is ATP:1D-myo-inositol-1,4,5-trisphosphate 3-phosphotransferase. ITP3K catalyzes the transfer of the gamma-phosphate from ATP to the 3-position of inositol 1,4,5-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate. ITP3K is highly specific for the 1,4,5-isomer of IP3, and it exclusively phosphorylates the 3-OH position, producing Ins(1,3,4,5)P4, also known as inositol tetrakisphosphate or IP4.
1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-3 is an enzyme that in humans is encoded by the PLCB3 gene.
1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 is an enzyme that in humans is encoded by the PLCD1 gene. PLCd1 is essential to maintain homeostasis of the skin.
Phospholipase C epsilon 1 (PLCE1) is an enzyme that in humans is encoded by the PLCE1 gene. This gene encodes a phospholipase enzyme (PLCE1) that catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate to generate two second messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). Mutations in this gene cause early-onset nephrotic syndrome and have been associated with respiratory chain deficiency with diffuse mesangial sclerosis.
Inositol-trisphosphate 3-kinase A is an enzyme that in humans is encoded by the ITPKA gene.
Calcium/calmodulin-dependent protein kinase kinase 1 is an enzyme that in humans is encoded by the CAMKK1 gene.
Ryanodine receptor 1 (RYR-1) also known as skeletal muscle calcium release channel or skeletal muscle-type ryanodine receptor is one of a class of ryanodine receptors and a protein found primarily in skeletal muscle. In humans, it is encoded by the RYR1 gene.
Inositol 1,4,5-trisphosphate receptor, type 2, also known as ITPR2, is a protein which in humans is encoded by the ITPR2 gene. The protein encoded by this gene is both a receptor for inositol triphosphate and a calcium channel.
Inositol 1,4,5-trisphosphate receptor, type 3, also known as ITPR3, is a protein which in humans is encoded by the ITPR3 gene. The protein encoded by this gene is both a receptor for inositol triphosphate and a calcium channel.
The ryanodine-inositol 1,4,5-triphosphate receptor Ca2+ channel (RIR-CaC) family includes Ryanodine receptors and Inositol trisphosphate receptors. Members of this family are large proteins, some exceeding 5000 amino acyl residues in length. This family belongs to the Voltage-gated ion channel (VIC) superfamily. Ry receptors occur primarily in muscle cell sarcoplasmic reticular (SR) membranes, and IP3 receptors occur primarily in brain cell endoplasmic reticular (ER) membranes where they effect release of Ca2+ into the cytoplasm upon activation (opening) of the channel. They are redox sensors, possibly providing a partial explanation for how they control cytoplasmic Ca2+. Ry receptors have been identified in heart mitochondria where they provide the main pathway for Ca2+ entry. Sun et al. (2011) have demonstrated oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel (RyR1;TC# 1.A.3.1.2) by NADPH oxidase 4.
Calcium binding protein 2, also known as CaBP2, is a protein that in humans is encoded by the CABP2 gene.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.