Cellulomonas | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Actinomycetota |
Class: | Actinomycetia |
Order: | Micrococcales |
Family: | Cellulomonadaceae |
Genus: | Cellulomonas Bergey et al. 1923 (Approved Lists 1980) [1] |
Type species | |
Cellulomonas flavigena | |
Species | |
See text. |
Cellulomonas is a genus of Gram-positive rod-shaped bacteria. [1] One of their main distinguishing features is their ability to degrade cellulose, using enzymes such as endoglucanase and exoglucanase. [2] They are members of the Actinomycetota. [3]
Cellulomonas comprises the following species: [4]
Arthrobacter is a genus of bacteria that is commonly found in soil. All species in this genus are Gram-positive obligate aerobes that are rods during exponential growth and cocci in their stationary phase. Arthrobacter have a distinctive method of cell division called "snapping division" or reversion in which the outer bacterial cell wall ruptures at a joint.
Pseudomonas is a genus of Gram-negative bacteria belonging to the family Pseudomonadaceae in the class Gammaproteobacteria. The 313 members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a wide range of niches. Their ease of culture in vitro and availability of an increasing number of Pseudomonas strain genome sequences has made the genus an excellent focus for scientific research; the best studied species include P. aeruginosa in its role as an opportunistic human pathogen, the plant pathogen P. syringae, the soil bacterium P. putida, and the plant growth-promoting P. fluorescens, P. lini, P. migulae, and P. graminis.
Rhizobium is a genus of Gram-negative soil bacteria that fix nitrogen. Rhizobium species form an endosymbiotic nitrogen-fixing association with roots of (primarily) legumes and other flowering plants.
Micromonospora is a genus of bacteria of the family Micromonosporaceae. The genus name was first proposed in 1923 by Danish physician Jeppe Ørskov in an attempt to classify what at the time was considered "ray fungi" based on morphology. Members of this genus are found throughout natural soil and sediment environments, as well as in association with roots of plants of various species. The genus is well known for its ability to produce a variety of medically relevant products.
Micromonosporaceae is a family of bacteria of the class Actinomycetia. They are gram-positive, spore-forming soil organisms that form a true mycelium.
Actinomyces is a genus of the Actinomycetia class of bacteria. They all are gram-positive. Actinomyces species are facultatively anaerobic and they grow best under anaerobic conditions. Actinomyces species may form endospores, and while individual bacteria are rod-shaped, Actinomyces colonies form fungus-like branched networks of hyphae. The aspect of these colonies initially led to the incorrect assumption that the organism was a fungus and to the name Actinomyces, "ray fungus".
The Rhizobiaceae is a family of Pseudomonadota comprising multiple subgroups that enhance and hinder plant development. Some bacteria found in the family are used for plant nutrition and collectively make up the rhizobia. Other bacteria such as Agrobacterium tumefaciens and Rhizobium rhizogenes severely alter the development of plants in their ability to induce crown galls or hairy roots, respectively. The family has been of an interest to scientists for centuries in their ability to associate with plants and modify plant development. The Rhizobiaceae are, like all Pseudomonadota, Gram-negative. They are aerobic, and the cells are usually rod-shaped. Many species of the Rhizobiaceae are diazotrophs which are able to fix nitrogen and are symbiotic with plant roots.
Corynebacterium is a genus of Gram-positive bacteria and most are aerobic. They are bacilli (rod-shaped), and in some phases of life they are, more specifically, club-shaped, which inspired the genus name.
The Hyphomicrobiales are an order of Gram-negative Alphaproteobacteria.
Nocardia is a genus of weakly staining Gram-positive, catalase-positive, rod-shaped bacteria. It forms partially acid-fast beaded branching filaments. It contains a total of 85 species. Some species are nonpathogenic, while others are responsible for nocardiosis. Nocardia species are found worldwide in soil rich in organic matter. In addition, they are oral microflora found in healthy gingiva, as well as periodontal pockets. Most Nocardia infections are acquired by inhalation of the bacteria or through traumatic introduction.
The Thermoactinomycetaceae are a family of Gram-positive endospore-forming bacteria.
Rhodococcus is a genus of aerobic, nonsporulating, nonmotile Gram-positive bacteria closely related to Mycobacterium and Corynebacterium. While a few species are pathogenic, most are benign, and have been found to thrive in a broad range of environments, including soil, water, and eukaryotic cells. Some species have large genomes, including the 9.7 megabasepair genome of Rhodococcus sp. RHA1.
The family Flavobacteriaceae is composed of environmental bacteria. Most species are aerobic, while some are microaerobic to anaerobic; for example Capnocytophaga and Coenonia.
Microbacteriaceae is a family of bacteria of the order Actinomycetales. They are Gram-positive soil organisms.
The Pseudonocardiaceae are a family of bacteria in the order Actinomycetales and the only member of the suborder Pseudonocardineae.
Microbacterium is a genus of bacteria in the family Microbacteriaceae. Microbacteria are common contaminants of laboratory reagents, which can lead to their being misrepresented in microbiome data.
Pseudonocardia is the type genus of the bacteria family Pseudonocardiaceae. Members of this genus have been found living mutualistically on the cuticle of the leafcutter ants because the bacteria has antibiotic properties that protect the fungus grown by the ants. When they are grooming, their legs are passed over their mouth gland that produces the antibiotic and then their legs touch the fungi while they are walking around. The ants have metapleural glands that produce the antimicrobial components to eliminate the Escovopsis fungi. The bacteria may also be found in crypts on the propleural plate. Pseudonocardia is found to have antibiotic properties provided to the leaf-cutter ant to inhibit the growth of Escovopsis, which is a black yeast that parasitizes the leaf-cutter ant. Pseudonocardia can be found in both aquatic and terrestrial ecosystems. Pseudonocardia belongs to the phylum Actinobacteria. Most Actinobacteria grow in soils that are of a neutral pH. Actinobacteria are also important in plant-associated microbial communities are referred to as "free-living." This means that they are not dependent on another organism to live. For example: A non-free-living organism would be a parasite that depends on a host as a food source and a place for shelter. "Free-living" also allows these organisms to require less energy and food for survival. Pseudonocardia is catalase-positive, non-motile, aerobic and a non-acid-fasting bacteria and produces a gram positive reaction. Under the microscope they exhibit branching, rod-shaped organisms.
There are many different strains of Pseudonocardia and a good portion of these strains have been found in China, in soils of the forest, and in Eucalyptus trees of Australia.
The genus Actinomadura is one of four genera of Actinomycetota that belong to the family Thermomonosporaceae. It contains aerobic, Gram-positive, non-acid-fast, non-motile, chemo-organotrophic actinomycetes that produce well-developed, non-fragmenting vegetative mycelia and aerial hyphae that differentiate into surface-ornamented spore chains. These chains are of various lengths and can be straight, hooked or spiral. The genus currently comprises over 70 species with validly published names with standing in nomenclature, although the species status of some strains remains uncertain, and further comparative studies are needed.
Nocardioides is a Gram-positive, mesophilic and aerobic bacterial genus from the family of Nocardioidaceae.