Cetyl myristoleate

Last updated
Cetyl myristoleate
Cetyl myristoleate.svg
Names
Preferred IUPAC name
Hexadecyl (9Z)-tetradec-9-enoate
Other names
cis-9-Cetyl myristoleate
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C30H58O2/c1-3-5-7-9-11-13-15-16-17-19-21-23-25-27-29-32-30(31)28-26-24-22-20-18-14-12-10-8-6-4-2/h10,12H,3-9,11,13-29H2,1-2H3/b12-10- X mark.svgN
    Key: DYIOQMKBBPSAFY-BENRWUELSA-N X mark.svgN
  • InChI=1/C30H58O2/c1-3-5-7-9-11-13-15-16-17-19-21-23-25-27-29-32-30(31)28-26-24-22-20-18-14-12-10-8-6-4-2/h10,12H,3-9,11,13-29H2,1-2H3/b12-10-
    Key: DYIOQMKBBPSAFY-BENRWUELBX
  • CCCCCCCCCCCCCCCCOC(=O)CCCCCCC/C=C\CCCC
Properties
C30H58O2
Molar mass 450.792 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Cetyl myristoleate is a fatty acid ester or, more specifically, a cetylated fatty acid (CFA). It is the cetyl ester of myristoleic acid. [1] Preclinical and clinical data show potential benefits in the management of arthritis and fibromyalgia. [2] [ unreliable medical source? ]

Contents

History

Cetyl myristoleate was isolated for the first time by Dr. Harry Diehl at the Laboratory of Chemistry of the National Institute of Arthritis, Metabolic, and Digestive Diseases in Bethesda, Maryland. Dr. Diehl had tried to unsuccessfully induce polyarthritis in Swiss albino mice using Freund's adjuvant (heat-killed desiccated Mycobacterium butyricum) but realized that they were immune. Further investigation revealed that cetyl myristoleate was what was causing the mice to be immune to becoming arthritic. The compound was isolated and identified using thin layer chromatography. In order to validate his theory that cetyl myristoleate could prevent arthritis in rodents, Diehl injected two groups of rats with the arthritis-inducing Freund’s adjuvant. After 20 days, both groups had no visible sign of arthritis. Then, a group was re-injected with the adjuvant while the other group received an injection of cetyl myristoleate followed by an injection of the adjuvant 48 hours later. After 58 days of observation, the rats that had not received cetyl myristoleate injections had developed swelling, had grown on average 5.17 times less than the other group and were lethargic. On the other hand, the rats who received cetyl myristoleate injections were healthy and growing at a normal rate. The findings were first published in 1994 in the peer-reviewed American Journal of Pharmaceutical Sciences. [3] [4]

Synthesis

Cetyl myristoleate has been prepared by an esterification reaction between myristoleic acid and cetyl alcohol, catalyzed by p-toluenesulfonic acid monohydrate. [3]

Animal pharmacology

In animal studies, cetyl myristoleate was first reported to block inflammation and prevent adjuvant-induced arthritis at very high doses in rats. [3] [5] In follow-up studies in mice, a modest anti-inflammatory effect was observed. [3]

Studies in humans

In 1997, a prospective randomized study conducted by H. Siemandi showed that after 32 weeks of observation, cetyl myristoleate had clearly superior efficacy in terms of reducing the frequency of arthritic episodes when compared to control groups of patients who received a mixture of natural compounds or a placebo. [6]

Although cetyl myristoleate is sold as a dietary supplement, its possible benefits in the treatment of any medical condition are not completely established [1] and the Federal Trade Commission has taken legal action against supplement manufacturers for inaccurate claims. [7]

There is some clinical evidence for the benefits of CFAs, which may contain cetyl myristoleate, in arthritic patients. [8] One pilot study found that cetyl myristoleate may be beneficial against fibromyalgia, [9] and there have been other studies. [2] However, these low-quality clinical trials provide only limited scientific evidence of efficacy. [1]

Mechanism of Action

Although not fully established, the most likely mechanism of action of cetyl myristoleate is the decrease of production of prostaglandins and leukotrienes through the inhibition of the lipoxygenase and cyclooxygenase pathways of arachidonic acid metabolism. [10]

Related Research Articles

<span class="mw-page-title-main">Arthritis</span> Type of joint disorder

Arthritis is a term often used to mean any disorder that affects joints. Symptoms generally include joint pain and stiffness. Other symptoms may include redness, warmth, swelling, and decreased range of motion of the affected joints. In some types of arthritis, other organs are also affected. Onset can be gradual or sudden.

<span class="mw-page-title-main">Rheumatoid arthritis</span> Type of autoimmune arthritis

Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are involved, with the same joints typically involved on both sides of the body. The disease may also affect other parts of the body, including skin, eyes, lungs, heart, nerves and blood. This may result in a low red blood cell count, inflammation around the lungs, and inflammation around the heart. Fever and low energy may also be present. Often, symptoms come on gradually over weeks to months.

<span class="mw-page-title-main">Hip dysplasia (canine)</span> Joint abnormality in dogs

In dogs, hip dysplasia is an abnormal formation of the hip socket that, in its more severe form, can eventually cause lameness and arthritis of the joints. It is a genetic (polygenic) trait that is affected by environmental factors. It is common in many dog breeds, particularly the larger breeds, and is the most common single cause of arthritis of the hips.

<span class="mw-page-title-main">Osteoarthritis</span> Form of arthritis caused by degeneration of joints

Osteoarthritis (OA) is a type of degenerative joint disease that results from breakdown of joint cartilage and underlying bone which affects 1 in 7 adults in the United States. It is believed to be the fourth leading cause of disability in the world. The most common symptoms are joint pain and stiffness. Usually the symptoms progress slowly over years. Other symptoms may include joint swelling, decreased range of motion, and, when the back is affected, weakness or numbness of the arms and legs. The most commonly involved joints are the two near the ends of the fingers and the joint at the base of the thumbs, the knee and hip joints, and the joints of the neck and lower back. The symptoms can interfere with work and normal daily activities. Unlike some other types of arthritis, only the joints, not internal organs, are affected.

Glucosamine (C6H13NO5) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine is part of the structure of two polysaccharides, chitosan and chitin. Glucosamine is one of the most abundant monosaccharides. Produced commercially by the hydrolysis of shellfish exoskeletons or, less commonly, by fermentation of a grain such as corn or wheat, glucosamine has many names depending on country.

<span class="mw-page-title-main">Methylsulfonylmethane</span> Chemical compound

Dimethyl sulfone (DMSO2) is an organosulfur compound with the formula (CH3)2SO2. It is also known by several other names including methyl sulfone and (especially in alternative medicine) methylsulfonylmethane (MSM). This colorless solid features the sulfonyl functional group and is the simplest of the sulfones. It is relatively inert chemically and is able to resist decomposition at elevated temperatures. It occurs naturally in some primitive plants, is present in small amounts in many foods and beverages, and is marketed (under the MSM name) as a dietary supplement. It is sometimes used as a cutting agent for illicitly manufactured methamphetamine. It is also commonly found in the atmosphere above marine areas, where it is used as a carbon source by the airborne bacteria Afipia. Oxidation of dimethyl sulfoxide produces the sulfone, both under laboratory conditions and metabolically.

<span class="mw-page-title-main">Cinchophen</span> Chemical compound

Cinchophen is an analgesic drug that was first produced by Doebner & Gieskel in 1887, it was commercially introduced in 1908 as a treatment for gout. This drug is still used, in combination with Prednisolone, by veterinarians to treat arthritis in animals. It can be prepared starting from anilin, benzaldehyde and pyruvic acid in absolute ethanol. Use of this drug in humans ceased in the 1930s due to the discovery that cinchophen can cause serious liver damage. There is some evidence that it stimulates C-Fos.

<span class="mw-page-title-main">Joint injection</span> Method of delivering drugs into a joint

In medicine, a joint injection is a procedure used in the treatment of inflammatory joint conditions, such as rheumatoid arthritis, psoriatic arthritis, gout, tendinitis, bursitis, Carpal Tunnel Syndrome, and occasionally osteoarthritis. A hypodermic needle is injected into the affected joint where it delivers a dose of any one of many anti-inflammatory agents, the most common of which are corticosteroids. Hyaluronic acid, because of its high viscosity, is sometimes used to replace bursa fluids. The technique may be used to also withdraw excess fluid from the joint.

Palifermin is a truncated human recombinant keratinocyte growth factor (KGF) produced in Escherichia coli. KGF stimulates the growth of cells that line the surface of the mouth and intestinal tract.

<span class="mw-page-title-main">Aurothioglucose</span> Gold containing medicine

Aurothioglucose, also known as gold thioglucose, is a chemical compound with the formula AuSC6H11O5. This derivative of the sugar glucose was formerly used to treat rheumatoid arthritis.

In immunology, an adjuvant is a substance that increases or modulates the immune response to a vaccine. The word "adjuvant" comes from the Latin word adiuvare, meaning to help or aid. "An immunologic adjuvant is defined as any substance that acts to accelerate, prolong, or enhance antigen-specific immune responses when used in combination with specific vaccine antigens."

<span class="mw-page-title-main">Free fatty acid receptor 2</span> Protein-coding gene in the species Homo sapiens

Free fatty acid receptor 2 (FFAR2), also termed G-protein coupled receptor 43 (GPR43), is a rhodopsin-like G-protein coupled receptor. It is coded by the FFAR2 gene. In humans, the FFAR2 gene is located on the long arm of chromosome 19 at position 13.12. Like other GPCRs, FFAR2s reside on the surface membrane of cells and when bond to one of their activating ligands regulate the function of their parent cells. FFAR2 is a member of a small family of structurally and functionally related GPRs termed free fatty acid receptors (FFARs). This family includes three other receptors which, like FFAR2, are activated by certain fatty acids: FFAR1, FFAR3 (GPR41), and FFAR4 (GPR120). FFAR2 and FFAR3 are activated by short-chain fatty acids whereas FFAR1 and FFAR4 are activated by long-chain fatty acids.

<span class="mw-page-title-main">Hydroxycarboxylic acid receptor 2</span> Protein-coding gene in the species Homo sapiens

Hydroxycarboxylic acid receptor 2 (HCA2), also known as GPR109A and niacin receptor 1 (NIACR1), is a protein which in humans is encoded (its formation is directed) by the HCAR2 gene and in rodents by the Hcar2 gene. The human HCAR2 gene is located on the long (i.e., "q") arm of chromosome 12 at position 24.31 (notated as 12q24.31). Like the two other hydroxycarboxylic acid receptors, HCA1 and HCA3, HCA2 is a G protein-coupled receptor (GPCR) located on the surface membrane of cells. HCA2 binds and thereby is activated by D-β-hydroxybutyric acid (hereafter termed β-hydroxybutyric acid), butyric acid, and niacin (also known as nicotinic acid). β-Hydroxybutyric and butyric acids are regarded as the endogenous agents that activate HCA2. Under normal conditions, niacin's blood levels are too low to do so: it is given as a drug in high doses in order to reach levels that activate HCA2.

<span class="mw-page-title-main">Free fatty acid receptor 4</span> Protein-coding gene in the species Homo sapiens

Free Fatty acid receptor 4 (FFAR4), also termed G-protein coupled receptor 120 (GPR120), is a protein that in humans is encoded by the FFAR4 gene. This gene is located on the long arm of chromosome 10 at position 23.33. G protein-coupled receptors reside on their parent cells' surface membranes, bind any one of the specific set of ligands that they recognize, and thereby are activated to trigger certain responses in their parent cells. FFAR4 is a rhodopsin-like GPR in the broad family of GPRs which in humans are encoded by more than 800 different genes. It is also a member of a small family of structurally and functionally related GPRs that include at least three other free fatty acid receptors (FFARs) viz., FFAR1, FFAR2, and FFAR3. These four FFARs bind and thereby are activated by certain fatty acids.

Folate targeting is a method utilized in biotechnology for drug delivery purposes. This Trojan Horse process, which was created by Drs. Christopher P. Leamon and Philip S. Low, involves the attachment of the vitamin, folate, to a molecule/drug to form a "folate conjugate". Based on the natural high affinity of folate for the folate receptor protein (FR), which is commonly expressed on the surface of many human cancers, folate-drug conjugates also bind tightly to the FR and trigger cellular uptake via endocytosis. Molecules as diverse as small radiodiagnostic imaging agents to large DNA plasmid formulations have successfully been delivered inside FR-positive cells and tissues.

Palmitoylethanolamide (PEA) is an endogenous fatty acid amide, and lipid modulator PEA has been studied in in vitro and in vivo systems using exogenously added or dosed compound; there is evidence that it binds to a nuclear receptor, through which it exerts a variety of biological effects, some related to chronic inflammation and pain.

<span class="mw-page-title-main">Knee arthritis</span> Medical condition

Arthritis of the knee is typically a particularly debilitating form of arthritis. The knee may become affected by almost any form of arthritis.

Gene therapy for osteoarthritis is the application of gene therapy to treat osteoarthritis (OA). Unlike pharmacological treatments which are administered locally or systemically as a series of interventions, gene therapy aims to establish sustained therapeutic effect after a single, local injection.

<span class="mw-page-title-main">Metadoxine</span> Medication used for alcohol intoxication

Metadoxine, also known as pyridoxine-pyrrolidone carboxylate, is a drug used to treat chronic and acute alcohol intoxication. Metadoxine accelerates alcohol clearance from the blood.

Collagen-induced arthritis (CIA) is a condition induced in mice to study rheumatoid arthritis.

References

  1. 1 2 3 Ameye, Laurent G; Chee, Winnie SS (2006). "From nutraceuticals to functional foods". Arthritis Research & Therapy . 8 (4): R127. doi: 10.1186/ar2016 . PMC   1779427 . PMID   16859534.
  2. 1 2 "Has CM8® - Cetyl Myristoleate Had Clinical Trials? - Yes It Has!". CM8. Retrieved 2020-03-31.
  3. 1 2 3 4 Hunter, Kenneth W; Gault, Ruth A; Stehouwer, Jeffrey S; Tam-Chang, Suk-Wah (2003). "Synthesis of cetyl myristoleate and evaluation of its therapeutic efficacy in a murine model of collagen-induced arthritis". Pharmacological Research. 47 (1): 43–7. CiteSeerX   10.1.1.549.2557 . doi:10.1016/S1043-6618(02)00239-6. PMID   12526860.
  4. H.W Diehl, E.L May (1994). "Cetyl myristoleate isolated from Swiss albino mice: an apparent protective agent against adjuvant arthritis in rats". J Pharm Sci. 83 (3): 296–9. doi:10.1002/jps.2600830307. PMID   8207671.
  5. H.W Diehl, E.L May (1994). "Cetyl myristoleate isolated from Swiss albino mice: an apparent protective agent against adjuvant arthritis in rats". J Pharm Sci. 83 (3): 296–9. doi:10.1002/jps.2600830307. PMID   8207671.
  6. Siemandi, H. "The Effect of cis-9-Cetyl Myristoleate (CMO) and Adjunctive Therapy on Arthritis and Auto-Immune Disease" . Retrieved 20 November 2021.
  7. See for example:
    DOCKET NO. C-3896 Archived April 21, 2013, at the Wayback Machine , Federal Trade Commission
    FTC Complaint against EHP Products, Inc.
    FTP Complaint against CMO Distribution Centers of America, Inc.
  8. See cetyl-myristoleate.com/clinical-studies; and Hesslink Jr, R; Armstrong d, 3rd; Nagendran, MV; Sreevatsan, S; Barathur, R (2002). "Cetylated fatty acids improve knee function in patients with osteoarthritis". The Journal of Rheumatology. 29 (8): 1708–12. PMID   12180734.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  9. A.M Edwards (2001). "CMO (cerasomol-cis-9-cetyl myristoleate) in the treatment of fibromyalgia: an open pilot study". J. Nutr. Environ. Med. 11 (2): 105–111. doi:10.1080/13590840120060849.
  10. MORELLI, VINCENT; NAQUIN, CHRISTOPHER; WEAVER, VICTOR (Jan 2003). "Alternative Therapies for Traditional Disease States: Osteoarthritis". American Family Physician. 67 (67): 339, 344. PMID   12562155 . Retrieved 20 November 2021.