In mathematics, a character group is the group of representations of an abelian group by complex-valued functions. These functions can be thought of as one-dimensional matrix representations and so are special cases of the group characters that arise in the related context of character theory. Whenever a group is represented by matrices, the function defined by the trace of the matrices is called a character; however, these traces do not in general form a group. Some important properties of these one-dimensional characters apply to characters in general:
The primary importance of the character group for finite abelian groups is in number theory, where it is used to construct Dirichlet characters. The character group of the cyclic group also appears in the theory of the discrete Fourier transform. For locally compact abelian groups, the character group (with an assumption of continuity) is central to Fourier analysis.
Let be an abelian group. A function mapping to the group of non-zero complex numbers is called a character of if it is a group homomorphism—that is, if for all .
If is a character of a finite group (or more generally a torsion group) , then each function value is a root of unity, since for each there exists such that , and hence .
Each character f is a constant on conjugacy classes of G, that is, f(hgh−1) = f(g). For this reason, a character is sometimes called a class function.
A finite abelian group of order n has exactly n distinct characters. These are denoted by f1, ..., fn. The function f1 is the trivial representation, which is given by for all . It is called the principal character of G; the others are called the non-principal characters.
If G is an abelian group, then the set of characters fk forms an abelian group under pointwise multiplication. That is, the product of characters and is defined by for all . This group is the character group of G and is sometimes denoted as . The identity element of is the principal character f1, and the inverse of a character fk is its reciprocal 1/fk. If is finite of order n, then is also of order n. In this case, since for all , the inverse of a character is equal to the complex conjugate.
There is another definition of character group [1] pg 29 which uses as the target instead of just . This is useful when studying complex tori because the character group of the lattice in a complex torus is canonically isomorphic to the dual torus via the Appell–Humbert theorem. That is,
We can express explicit elements in the character group as follows: recall that elements in can be expressed as
for . If we consider the lattice as a subgroup of the underlying real vector space of , then a homomorphism
can be factored as a map
This follows from elementary properties of homomorphisms. Note that
giving us the desired factorization. As the group
we have the isomorphism of the character group, as a group, with the group of homomorphisms of to . Since for any abelian group , we have
after composing with the complex exponential, we find that
which is the expected result.
Since every finitely generated abelian group is isomorphic to
the character group can be easily computed in all finitely generated cases. From universal properties, and the isomorphism between finite products and coproducts, we have the character groups of is isomorphic to
for the first case, this is isomorphic to , the second is computed by looking at the maps which send the generator to the various powers of the -th roots of unity .
Consider the matrix A = A(G) whose matrix elements are where is the kth element of G.
The sum of the entries in the jth row of A is given by
The sum of the entries in the kth column of A is given by
Let denote the conjugate transpose of A. Then
This implies the desired orthogonality relationship for the characters: i.e.,
where is the Kronecker delta and is the complex conjugate of .
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after Niels Henrik Abel.
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.
In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol ⋉. There are two closely related concepts of semidirect product:
In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.
In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.
In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.
The representation theory of groups is a part of mathematics which examines how groups act on given structures.
In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.
The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.
In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense. Here N must be the even number 2n, where n is the complex dimension of M.
In mathematics, a local system on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943.
In mathematics, the Abel–Jacobi map is a construction of algebraic geometry which relates an algebraic curve to its Jacobian variety. In Riemannian geometry, it is a more general construction mapping a manifold to its Jacobi torus. The name derives from the theorem of Abel and Jacobi that two effective divisors are linearly equivalent if and only if they are indistinguishable under the Abel–Jacobi map.
In mathematics, the Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety. It was proved for 2-dimensional tori by Appell and Humbert, and in general by Lefschetz
In mathematics, the Weil–Brezin map, named after André Weil and Jonathan Brezin, is a unitary transformation that maps a Schwartz function on the real line to a smooth function on the Heisenberg manifold. The Weil–Brezin map gives a geometric interpretation of the Fourier transform, the Plancherel theorem and the Poisson summation formula. The image of Gaussian functions under the Weil–Brezin map are nil-theta functions, which are related to theta functions. The Weil–Brezin map is sometimes referred to as the Zak transform, which is widely applied in the field of physics and signal processing; however, the Weil–Brezin Map is defined via Heisenberg group geometrically, whereas there is no direct geometric or group theoretic interpretation from the Zak transform.
This is a glossary of representation theory in mathematics.
In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences to the category of abelian groups.