Chlorphoxim

Last updated
Chlorphoxim
Chlorphoxim Structural Formula.svg
Names
IUPAC name
(1Z)-2-chloro-N-diethoxyphosphinothioyloxybenzenecarboximidoyl cyanide
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.035.338 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 238-888-9
KEGG
PubChem CID
UNII
  • InChI=1S/C12H14ClN2O3PS/c1-3-16-19(20,17-4-2)18-15-12(9-14)10-7-5-6-8-11(10)13/h5-8H,3-4H2,1-2H3/b15-12+
  • Key: GQKRUMZWUHSLJF-NTCAYCPXSA-N
  • CCOP(=S)(OCC)O/N=C(\C#N)/C1=CC=CC=C1Cl
Properties
C12H14ClN2O3PS
Molar mass 332.74 g·mol −1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Chlorphoxime is an insecticide used as crop protection active ingredient. [1] Chlorphoxime is also a cholinesterase inhibitor and a neurotoxin. [2]

Contents

Properties

A study was conducted to investigate the effect of chlorophoxime for the control of fleas in kangaroo rats and hispid cotton rats. Chlorphoxime was found to be effective. [3]

In another study, the efficacy of some insecticides was investigated on certain storage pests. While phoxim, bioresmethrin and fenitrothion showed strong activity against the red-brown rice mealybug, the insecticidal activity of chlorphoxim and permethrin was low. [4]

Production

The synthesis of chlorophoxime is described in the following reaction sequence: [1]

Chlorphoxim synthesis Chlorphoxim Synthesis.svg
Chlorphoxim synthesis

Trade names

A crop protection product containing the active ingredient chlorophoxime is marketed under the trade name Baythion. [1]

Approval

No plant protection products containing chlorophoxime are approved in the European Union or Switzerland. [5]

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are used as plant protection products, which in general protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

<span class="mw-page-title-main">Piperonyl butoxide</span> Chemical compound

Piperonyl butoxide (PBO) is a pale yellow to light brown liquid organic compound used as an adjuvant component of pesticide formulations for synergy. That is, despite having no pesticidal activity of its own, it enhances the potency of certain pesticides such as carbamates, pyrethrins, pyrethroids, and rotenone. It is a semisynthetic derivative of safrole and is produced from the condensation of the sodium salt of 2-(2-butoxyethoxy) ethanol and the chloromethyl derivative of hydrogenated safrole (dihydrosafrole). Although this route of synthesis has faced a lot of criticism in recent times. The new route of synthesis is through 1,2-Methylenedioxybenzene, developed by The Anthea Group and patented in 2019.

<span class="mw-page-title-main">Dicofol</span> Chemical compound

Dicofol is an insecticide, an organochlorine that is chemically related to DDT. Dicofol is a miticide that is very effective against spider mite. Its production and use is banned internationally under the Stockholm Convention.

<span class="mw-page-title-main">Imidacloprid</span> Chemical compound

Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.

<span class="mw-page-title-main">Chlorfenvinphos</span> Chemical compound

Chlorfenvinphos is an organophosphorus compound that was widely used as an insecticide and an acaricide. The molecule itself can be described as an enol ester derived from dichloroacetophenone and diethylphosphonic acid. Chlorfenvinphos has been included in many products since its first use in 1963. However, because of its toxic effect as a cholinesterase inhibitor it has been banned in several countries, including the United States and the European Union. Its use in the United States was cancelled in 1991.

<span class="mw-page-title-main">Insect repellent</span> Substance which repels insects

An insect repellent is a substance applied to the skin, clothing, or other surfaces to discourage insects from landing or climbing on that surface. Insect repellents help prevent and control the outbreak of insect-borne diseases such as malaria, Lyme disease, dengue fever, bubonic plague, river blindness, and West Nile fever. Pest animals commonly serving as vectors for disease include insects such as flea, fly, and mosquito; and ticks (arachnids).

<span class="mw-page-title-main">Fipronil</span> Chemical compound

Fipronil is a broad-spectrum insecticide that belongs to the phenylpyrazole chemical family. Fipronil disrupts the insect central nervous system by blocking the ligand-gated ion channel of the GABAA receptor and glutamate-gated chloride (GluCl) channels. This causes hyperexcitation of contaminated insects' nerves and muscles. Fipronil's specificity towards insects is believed to be due to its greater binding affinity for the GABAA receptors of insects than to those of mammals, and for its action on GluCl channels, which do not exist in mammals. As of 2017, there does not appear to be significant resistance among fleas to fipronil.

A biopesticide is a biological substance or organism that damages, kills, or repels organisms seen as pests. Biological pest management intervention involves predatory, parasitic, or chemical relationships.

<span class="mw-page-title-main">Diquat</span> Chemical compound

Diquat is the ISO common name for an organic dication that, as a salt with counterions such as bromide or chloride is used as a contact herbicide that produces desiccation and defoliation. Diquat is no longer approved for use in the European Union, although its registration in many other countries including the USA is still valid.

Neonicotinoids are a class of neuro-active insecticides chemically similar to nicotine, developed by scientists at Shell and Bayer in the 1980s.

<span class="mw-page-title-main">Azoxystrobin</span> Chemical compound

Azoxystrobin is a broad spectrum systemic fungicide widely used in agriculture to protect crops from fungal diseases. It was first marketed in 1996 using the brand name Amistar and by 1999 it had been registered in 48 countries on more than 50 crops. In the year 2000 it was announced that it had been granted UK Millennium product status.

<span class="mw-page-title-main">Sulfentrazone</span> Chemical compound

Sulfentrazone is the ISO common name for an organic compound used as a broad-spectrum herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase. It was first marketed in the US in 1997 by FMC Corporation with the brand name Authority.

<span class="mw-page-title-main">Cyhalothrin</span> Synthetic pyrethroid used as insecticide

Cyhalothrin is the ISO common name for an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as cyhalothrin are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. λ-and γ-cyhalothrin are now used to control insects and spider mites in crops including cotton, cereals, potatoes and vegetables.

<span class="mw-page-title-main">Indoxacarb</span> Chemical compound

Indoxacarb is an oxadiazine pesticide developed by DuPont that acts against lepidopteran larvae. It is marketed under the names Indoxacarb Technical Insecticide, Steward Insecticide and Avaunt Insecticide. It is also used as the active ingredient in the Syngenta line of commercial pesticides: Advion and Arilon.

<span class="mw-page-title-main">Methiocarb</span> Chemical compound

Methiocarb is a carbamate pesticide which is used as an insecticide, bird repellent, acaricide and molluscicide since the 1960s. Methiocarb has contact and stomach action on mites and neurotoxic effects on molluscs. Seeds treated with methiocarb also affect birds. Other names for methiocarb are mesurol and mercaptodimethur.

<span class="mw-page-title-main">Acetamiprid</span> Chemical compound

Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.

<span class="mw-page-title-main">Tefluthrin</span> Synthetic pyrethroid used as insecticide

Tefluthrin is the ISO common name for an organic compound that is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as tefluthrin are often preferred as active ingredients in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. It is effective against soil pests because it can move as a vapour without irreversibly binding to soil particles: in this respect it differs from most other pyrethroids.

<span class="mw-page-title-main">Fomesafen</span> PPOi herbicide

Fomesafen is the ISO common name for an organic compound used as an herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase (PPO) which is necessary for chlorophyll synthesis. Soybeans naturally have a high tolerance to fomesafen, via metabolic disposal by glutathione S-transferase. As a result, soy is the most common crop treated with fomesafen, followed by other beans and a few other crop types. It is not safe for maize/corn or other Poaceae.

<span class="mw-page-title-main">Butamifos</span> Chemical compound

Butamifos is an herbicide that is used to control weeds.

References

  1. 1 2 3 Thomas A. Unger (1996), "Chlorphoxim", Pesticide Synthesis Handbook (in German), Elsevier, p. 312, doi:10.1016/b978-081551401-5.50240-9, ISBN   978-0-8155-1401-5
  2. University of Hertfordshire. "Chlorphoxim (Ref: OMS 1197)" . Retrieved 2022-06-22.
  3. Bryan E. Miller, William. C. Bennett, Garth N. Graves, John R. Wheeler (1977-11-25), "Field Studies of Systemic Insecticides. II. Evaluation of chlorphoxim for control of fleas on five rodent species12", Journal of Medical Entomology (in German), vol. 14, no. 2, pp. 161–166, doi:10.1093/jmedent/14.2.161, ISSN   1938-2928, PMID   606815 {{citation}}: CS1 maint: multiple names: authors list (link)
  4. M. A. Khan (1983-02-01), "Wirksamkeit von Insektiziden und Repellents gegen Vorratsschädlinge", Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz (in German), vol. 56, no. 2, pp. 25–29, doi:10.1007/BF01905984, ISSN   1612-4766, S2CID   31751339
  5. European Commission Directorate-General for Health and Food Safety: EU Pesticides Database; entry in the national plant protection product inventories of Switzerland, Austria and Germany, accessed July 20, 2022.