Chromosome condensation

Last updated
Figure 1 Interphase nucleus and mitotic chromosomes in human cells. Bar, 10 mm Condensation1.png
Figure 1 Interphase nucleus and mitotic chromosomes in human cells. Bar, 10 μm

Chromosome condensation refers to the process by which dispersed interphase chromatin is transformed into a set of compact, rod-shaped structures during mitosis and meiosis (Figure 1). [1] [2] [3] [4]

Contents

The term "chromosome condensation" has long been used in biology. However, it is now increasingly recognized that mitotic chromosome condensation proceeds through mechanisms distinct from those governing "condensation" in physical chemistry (e.g., gas-to-liquid phase transitions) or the formation of "biomolecular condensates" in cell biology. Consequently, some researchers have argued that the term "chromosome condensation" may be misleading in this context. For this reason, alternative terms such as "chromosome assembly" or "chromosome formation" are also commonly used.

Processes of chromosome condensation

From DNA to chromosomes

A diploid human cell contains 46 chromosomes: 22 pairs of autosomes (22 × 2) and one pair of sex chromosomes (XX or XY). The total length of DNA within a single nucleus reaches ~2 m. These DNA molecules are initially wrapped around histones to form nucleosomes, which are further compacted into chromatin fibers, commonly referred to as 30-nm fibers. During interphase, these fibers are confined within the nucleus, which has a diameter of only ~10–20 um. During mitosis, chromatin is reorganized into a set of rod-shaped structures (i.e., mitotic chromosomes) that can be individually distinguished under a microscope.

This transformation was first described meticulously in the late 19th century by the German cytologist Walther Flemming. Originally, the term "chromosome" referred specifically to these highly condensed mitotic structures, although its meaning has since broadened (see chromosome).

In mitotic chromosomes of higher eukaryotes, DNA is compacted lengthwise by a factor of ~10,000. For example, human chromosome 8 contains a DNA molecule about 50 mm long, yet it is folded into a metaphase chromosome only ~5 um in length. This degree of compaction is comparable to folding a 600-meter-long thread (the height of the Tokyo Skytree) into the size of an AA battery.

Physiological significance of chromosome condensation

As described above, although DNA in interphase is already organized into chromatin, it is dispersed throughout the nucleus and therefore not observed as individual chromosomes. Upon entry into prophase, condensation begins near the nuclear periphery, and fibrous structures gradually become visible. After nuclear envelope breakdown in prometaphase, condensation proceeds further. By metaphase, when condensation is apparently complete, the two sister chromatids of each chromosome can be clearly distinguished. This entire sequence of processes is often collectively referred to as chromosome condensation; however, due to our currently limited understanding of the higher-order structure of chromosomes, the precise definition of this term remains ambiguous.

Figure 2. Steps of chromosome condensation Condensation4.png
Figure 2. Steps of chromosome condensation
Figure 3. Eukaryotic chromosome segregation Resolution6E.png
Figure 3. Eukaryotic chromosome segregation

In principle, the process of chromosome condensation can be divided into three sequential but overlapping steps (Figure 2): [5]

1. Individualization – Disentanglement of chromatin fibers dispersed throughout the nucleus into discrete chromosome units.

2. Shaping/Compaction – Organization of each chromosome into a compact, rod-like structure.

3. Resolution – Resolution of replicated DNA strands within each chromosome into two distinct sister chromatids.

Although conceptually distinct, these steps occur concurrently and synergistically during mitosis. For this reason, the entire process is often collectively referred to as chromosome condensation. Importantly, chromosome condensation is not merely a reduction in chromatin length. Rather, it involves the organized folding of chromatin, initially in a random-coil–like state, into a highly structured rod-shaped form. This structural transformation is critical for ensuring the proper separation of sister chromatids during anaphase and provides the mechanical stiffness necessary for their faithful segregation (Figure 3). [6] Defects in chromosome condensation can impair chromosome segregation and ultimately lead to genome instability.

Protein factors involved in chromosome condensation

Identification of essential factors

Eukaryotic chromosome condensation has long been regarded as a highly complex process involving numerous proteins. However, recent studies have shown that single chromatids can be reconstituted in vitro by mixing sperm nuclei with only six purified proteins: core histones, three histone chaperones, topoisomerase II, and condensin I. [7] [8] The three histone chaperones serve distinct roles in this reconstitution assay: (1) Npm2 (Nucleoplasmin 2) removes basic sperm-specific proteins from sperm chromatin; (2) Nap1 (Nucleosome assembly protein 1) deposits core histones H2A-H2B onto DNA to form nucleosomes; (3) FACT (Facilitates Chromatin Transcription) dynamically remodels nucleosomes, thereby aiding the actions of topoisomerase II and condensin I. These chaperones do not remain associated with the final product of mitotic chromatids. In other words, the core reactions of mitotic chromosome condensation can be recapitulated using only three structural proteins, core histones, topoisomerase II, and condensin I, provided that their actions are aided by appropriate chaperone-mediated regulation.

Independent lines of previous evidence support this simple picture of chromosome condensation. For example, it has long been known that histones account for approximately half of the total protein mass in mitotic chromosomes. Both topoisomerase II and condensin I have been identified as major structural components of mitotic chromosomes [9] [10] as well as of the so-called chromosome scaffold. [11] Functional assays using Xenopus egg extracts [10] and genetic analyses in fission yeast [12] [13] have demonstrated that both proteins are essential for properly assembling mitotic chromosomes.

Condensins

Among the three major structural proteins of mitotic chromosomes, condensin was the last to be discovered. [10] [14] However, it is now widely recognized as playing a central role in mitotic chromosome condensation. [15] Most eukaryotes possess two types of condensin complexes, condensin I and condensin II, which partially overlap in function. In some organisms or cell types, condensin I alone is sufficient to support essential mitotic functions. Condensin exhibits ATPase activity and utilizes the energy from ATP hydrolysis to form DNA loops. Among the various models proposed for loop formation, the loop extrusion mechanism attracts much attention. [16] [17] However, an alternative mechanism [18] and higher-order assembly functions [4] have also been suggested.

The spatiotemporal regulation of condensins is tightly coordinated with the progression of the cell cycle. In vertebrate cells, condensin II localizes to the nucleus or chromosomes throughout the cell cycle, whereas condensin I remains in the cytoplasm during interphase. Upon entry into prophase, chromosome condensation is initiated by condensin II. After nuclear envelope breakdown in prometaphase, condensin I gains access to chromosomes, and the two complexes work cooperatively to promote further condensation. [19] [20]

Condensins are subject to various post-translational modifications, among which phosphorylation has been most extensively studied. In vertebrates, Cdk1-mediated phosphorylation is essential for both the DNA supercoiling activity [21] [22] and chromosome assembly activity [7] of condensin I. Experiments using Xenopus egg extracts have shown that phosphorylation of the N-terminal region of the CAP-H subunit relieves its autoinhibitory function, thereby activating the complex. [23] In condensin II, cdk1-dependent phosphorylation of the C-terminal region of the CAP-D3 subunit is similarly involved in releasing inhibitory constraints and promoting its activity. [24] [25]

Topoisomerase II

Topoisomerase II is an enzyme that controls DNA topology by catalyzing the transient cleavage and re-ligation of double-stranded DNA. [26] [27] Through this activity, topoisomerase II resolves DNA entanglements between sister chromatids or different chromosomes, thereby aiding the action of condensins. Interestingly, recent studies suggest that within individualized chromatids, topoisomerase II may also introduce DNA entanglements, which contribute to morphological shaping and structural stabilization of mitotic chromosomes. [8] [28] [29] Thus, topoisomerase II appears to play a dual role in chromosome architecture: both resolving and introducing DNA entanglements. [4] The C-terminal domain (CTD) of topoisomerase II is required for the latter function. Recently, topoisomerase II has been shown to mediate liquid-liquid phase separation (LLPS) in a DNA- and CTD-dependent manner. [30] These non-enzymatic properties may also contribute to mitotic chromosome condensation.

Topoisomerase II resides in the nucleus during interphase and becomes associated with chromosomes during mitosis. Its chromosomal binding is more dynamic than that of condensins. Although topoisomerase II undergoes various post-translational modifications, it remains unclear whether any of these modifications specifically regulate its activity during mitosis [26] [31]

Histones

Histones are major structural components of chromatin and chromosomes throughout the cell cycle. It has long been known that core histone H3 and linker histone H1 are phosphorylated specifically during mitosis, suggesting their specific contributions to chromosome condensation. [32] However, direct evidence that these phosphorylations directly induce chromosome condensation remains lacking. In contrast, recent studies have shown that histone deacetylation contributes significantly to mitotic chromosome condensation via phase separation mechanisms. [33]

Remarkably, in Xenopus egg extracts, it is possible to assemble chromosome-like structures even under conditions that inhibit nucleosome formation, provided that condensins and topoisomerase II are present. [34] [8] These "nucleosome-depleted" chromosomes consist of a central axis enriched in condensin and large lateral DNA loops extending from it. This observation suggests that condensins play a central role in shaping the mitotic chromosome, while nucleosomes contribute to the compaction of DNA loops around the axis.

Other Regulatory Factors

In vertebrate cells, in addition to post-translational modifications, several extrinsic regulatory factors have been identified that modulate condensin function and mitotic chromosome architecture.

In addition to protein regulators, the ionic environment is known to significantly affect the morphology and physical properties of mitotic chromosomes. [42] [43] [44] [45] [46]

Models of mitotic chromosomes and emerging experimental approaches

How chromatin fibers are folded within mitotic chromosomes remains an unsolved question in cell biology. Several models have been proposed to explain the higher-order architecture of condensed chromosomes. Classical models include the hierarchical folding model [47] and the radial loop model. [48] More recently, additional models such as the polymer model [49] and the hierarchical folding and axial glue model [50] have been introduced.

One of the major reasons for the slow progress in understanding the folding of chromatin fibers within mitotic chromosomes has been the limited availability of experimental tools for their structural analysis. Recently, however, the development of a variety of new technologies has enabled more detailed and multifaceted investigations.

Chromosome condensation in prokaryotes

Figure 4. Bacterial chromosome segregation BacCondensation4 E.png
Figure 4. Bacterial chromosome segregation

Although bacteria lack histones, their genomic DNA associates with various nucleoid-associated proteins (NAPs) to form the nucleoid , a functional counterpart of the eukaryotic chromosome.

In bacteria, DNA compaction is facilitated by the introduction of negative supercoils (typically of the plectonemic type) by the enzyme DNA gyrase , a bacterial type II topoisomerase. In contrast, archaea possess histone-like proteins, and in some species, a nucleosome-like particle with ~60 base pair periodicity [74] or an extended polymeric structure [75] have been observed. Recent advances in metagenomics and structure prediction algorithms have led to the discovery and classification of numerous histone-like proteins across prokaryotes. [76]

Many bacterial and archaeal species also possess SMC protein complexes analogous to eukaryotic condensins, including SMC–ScpAB and MukBEF, which play direct roles in organizing the nucleoid structure. [77] [78] [79] Loss-of-function mutations in these complexes cause abnormal nucleoid morphology and defects in chromosome segregation. Thus, prokaryotes undergo a process functionally equivalent to chromosome condensation, which is critical for ensuring proper chromosome segregation within a spatially confined cell volume (Figure 4). Furthermore, Hi-C) technology has been applied to study the dynamics of nucleoid reorganization mediated by bacterial condensin in several model organisms, including Caulobacter crescentus , [80] Bacillus subtilis , [81] and Escherichia coli . [82]

The following table summarizes the similarities and differences in chromosome architecture between eukaryotes and prokaryotes. Such comparisons are crucial for redefining the process of chromosome condensation at the molecular level and for gaining insights into the evolutionary principles underlying higher-order chromosome organization. [83] [15]

DNA binding proteinlocal structuredeterminant of local structuredeterminant of global structuredisentangling enzyme
eukaryotes histones left-handed toroidal  nucleosome condensin topoisomerase II
prokaryotes NAPs negatively supercoiled  DNA gyrase SMC-ScpAB/MukBEF topoisomerase IV

See also

References

  1. Marko JF (2008). "Micromechanical studies of mitotic chromosomes". Chromosome Res. 16 (3): 469–497. doi:10.1007/s10577-008-1233-7. PMID   18461485.
  2. Batty P, Gerlich DW (2019). "Mitotic chromosome mechanics: How cells segregate their genome". Trends Cell Biol. 29 (9): 717–726. doi: 10.1016/j.tcb.2019.05.007 . PMID   31230958.
  3. Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC (2021). "Mitotic chromosomes". Semin. Cell Dev. Biol. 117: S1084-9521(21)00061–6. doi:10.1016/j.semcdb.2021.03.014. PMC   8406421 . PMID   33836947.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 3 Hirano T (2025). "Mitotic genome folding". J Cell Biol. 224 (7): e202504075. doi:10.1083/jcb.202504075. PMID   40492990.
  5. Hirano T (2004). "Chromosome shaping by two condensins". Cell Cycle. 3 (1): 26–28. doi:10.4161/cc.3.1.633. PMID   14657659.
  6. Hirano T (2005). "Condensins: organizing and segregating the genome". Curr. Biol. 15 (7): R265-275. Bibcode:2005CBio...15.R265H. doi: 10.1016/j.cub.2005.03.037 . PMID   15823530.
  7. 1 2 3 Shintomi K, Takahashi TS, Hirano T (2015). "Reconstitution of mitotic chromatids with a minimum set of purified factors". Nat Cell Biol. 17 (8): 1014–1023. doi:10.1038/ncb3187. PMID   26075356.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. 1 2 3 4 Shintomi K, Hirano T (2021). "Guiding functions of the C-terminal domain of topoisomerase IIα advance mitotic chromosome assembly". Nat Commun. 12 (1) 2917. Bibcode:2021NatCo..12.2917S. doi:10.1038/s41467-021-23205-w. PMC   8131626 . PMID   34006877.
  9. Hirano T, Mitchison TJ (1993). "Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts". J Cell Biol. 120 (3): 601–612. doi:10.1083/jcb.120.3.601. PMC   2119547 . PMID   8381118.
  10. 1 2 3 Hirano T, Kobayashi R, Hirano M. (1997). "Condensins, chromosome condensation complex containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein". Cell. 89 (4): 511–21. doi:10.1016/s0092-8674(00)80233-0. PMID   9160743.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Maeshima K, Laemmli UK (2003). "A two-step scaffolding model for mitotic chromosome assembly". Dev Cell. 4 (4): 467–480. doi:10.1016/s1534-5807(03)00092-3. PMID   12689587.
  12. Uemura T, Ohkura H, Adachi Y, Morino K, Shiozaki K, Yanagida M (1987). "DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe". Cell. 50 (6): 917–925. doi:10.1016/0092-8674(87)90518-6. PMID   3040264.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M (1994). "Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis". EMBO J. 13 (20): 4938–4952. doi:10.1002/j.1460-2075.1994.tb06821.x. PMC   395434 . PMID   7957061.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003). "Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells". Cell. 115 (1): 109–21. doi:10.1016/s0092-8674(03)00724-4. PMID   14532007.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. 1 2 Hirano T (2016). "Condensin-based chromosome organization from bacteria to vertebrates". Cell. 164 (5): 847–857. doi: 10.1016/j.cell.2016.01.033 . PMID   26919425.
  16. 1 2 Goloborodko A, Imakaev MV, Marko JF, Mirny L (2016). "Compaction and segregation of sister chromatids via active loop extrusion". eLife. 5: doi: 10.7554/eLife.14864. doi: 10.7554/eLife.14864 . PMC   4914367 . PMID   27192037.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. 1 2 Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, Dekker C (2018). "Real-time imaging of DNA loop extrusion by condensin". Science. 360 (6384): 102–105. Bibcode:2018Sci...360..102G. doi:10.1126/science.aar7831. PMC   6329450 . PMID   29472443.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Uhlmann F (2025). "A unified model for cohesin function in sister chromatid cohesion and chromatin loop formation". Mol Cell. 85 (6): 1058–1071. doi: 10.1016/j.molcel.2025.02.005 . PMID   40118039.
  19. Ono T, Fang Y, Spector DL, Hirano T (2004). "Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells". Mol. Biol. Cell. 15 (7): 3296–308. doi:10.1091/mbc.e04-03-0242. PMC   452584 . PMID   15146063.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM (2004). "Distinct functions of condensin I and II in mitotic chromosome assembly". J. Cell Sci. 117 (Pt 26): 6435–45. doi:10.1242/jcs.01604. PMID   15572404.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. Kimura K, Hirano M, Kobayashi R, Hirano T (1998). "Phosphorylation and activation of 13S condensin by Cdc2 in vitro". Science. 282 (5388): 487–490. Bibcode:1998Sci...282..487K. doi:10.1126/science.282.5388.487. PMID   9774278.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. Kimura K, Rybenkov VV, Crisona NJ, Hirano T, Cozzarelli NR (1999). "13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation". Cell. 98 (2): 239–248. doi: 10.1016/s0092-8674(00)81018-1 . PMID   10428035.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. Tane S, Shintomi K, Kinoshita K, Tsubota Y, Yoshida MM, Nishiyama T, Hirano T (2022). "Cell cycle-specific loading of condensin I is regulated by the N-terminal tail of its kleisin subunit". eLife. 11: e84694. doi: 10.7554/eLife.84694 . PMC   9797191 . PMID   36511239.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. Yoshida MM, Kinoshita K, Aizawa Y, Tane S, Yamashita D, Shintomi K, Hirano T (2022). "Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays". eLife. 11: e78984. doi: 10.7554/eLife.78984 . PMC   9433093 . PMID   35983835.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. Yoshida MM, Kinoshita K, Shintomi K, Aizawa Y, Hirano T (2024). "Regulation of condensin II by self-suppression and release mechanisms". Mol Biol Cell. 35 (2): ar21. doi:10.1091/mbc.E23-10-0392. PMC   10881152 . PMID   38088875.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. 1 2 Lee JH, Berger JM (2019). "Cell cycle-dependent control and roles of DNA topoisomerase II". Genes (Basel). 10 (11): 859. doi: 10.3390/genes10110859 . PMC   6896119 . PMID   31671531.
  27. Pommier Y, Nussenzweig A, Takeda S, Austin C (2022). "Human topoisomerases and their roles in genome stability and organization". Nat Rev Mol Cell Biol. 23 (6): 407–427. doi:10.1038/s41580-022-00452-3. PMC   8883456 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. Kawamura R, Pope LH, Christensen MO, Sun M, Terekhova K, Boege F, Mielke C, Andersen AH, Marko JF (2010). "Mitotic chromosomes are constrained by topoisomerase II-sensitive DNA entanglements". J Cell Biol. 188 (5): 653–663. doi:10.1083/jcb.200910085. PMC   2835934 . PMID   20194637.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. 1 2 Tsubota Y, Shintomi K, Kinoshita K, Masahara-Negishi Y, Aizawa Y, Shima M, Hirano T, Nishiyama T (2025). "Functional interplay between condensin I and topoisomerase IIα in single-molecule DNA compaction". Nat Commun. 16: 7239. doi:10.1038/s41467-025-62600-5. PMID   40770194.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. Jeong J, Lee JH, Carcamo CC, Parker MW, Berger JM (2022). "DNA-Stimulated Liquid-Liquid phase separation by eukaryotic topoisomerase II modulates catalytic function". eLife. 11: e81786. doi: 10.7554/eLife.81786 . PMC   9674351 . PMID   36342377.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. Dekker B, Dekker J (2022). "Regulation of the mitotic chromosome folding machines". Biochem J. 479 (20): 2153–2173. doi:10.1042/BCJ20210140. PMC   9704520 . PMID   36268993.
  32. Bradbury EM (1992). "Reversible histone modifications and the chromosome cell cycle". BioEssays. 14 (1): 9–16. doi:10.1002/bies.950140103. PMID   1312335.
  33. Schneider MWG, Gibson BA, Otsuka S, Spicer MFD, Petrovic M, Blaukopf C, Langer CCH, Batty P, Nagaraju T, Doolittle LK, Rosen MK, Gerlich DW (2022). "A mitotic chromatin phase transition prevents perforation by microtubules". Nature. 609 (7925): 183–190. Bibcode:2022Natur.609..183S. doi:10.1038/s41586-022-05027-y. PMC   9433320 . PMID   35922507.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. Shintomi K, Inoue F, Watanabe H, Ohsumi K, Ohsugi M, Hirano T. (2017). "Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts". Science,356 (6344):1284-1287. PMID 28522692
  35. Takahashi M, Wakai T, Hirota T (2016). "Condensin I-mediated mitotic chromosome assembly requires association with chromokinesin KIF4A". Genes Dev. 30 (17): 1931–1936. doi:10.1101/gad.282855.116. PMC   5066236 . PMID   27633014.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. Cutts EE, Tetiker D, Kim E, Aragon L (2024). "Molecular mechanism of condensin I activation by KIF4A". EMBO J. 44 (3): 682–704. doi:10.1038/s44318-024-00340-w. PMC   11790958 . PMID   39690239.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. Yamashita D, Shintomi K, Ono T, Gavvovidis I, Schindler D, Neitzel H, Trimborn M, Hirano T (2011). "MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II". J. Cell Biol. 194 (6): 841–854. doi:10.1083/jcb.201106141. PMC   3207293 . PMID   21911480.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. Houlard M, Cutts EE, Shamim MS, Godwin J, Weisz D, Presser Aiden A, Lieberman Aiden E, Schermelleh L, Vannini A, Nasmyth K (2021). "MCPH1 inhibits Condensin II during interphase by regulating its SMC2-Kleisin interface". eLife. 10 (2): 451–469. doi: 10.7554/eLife.73348 . PMC   8673838 . PMID   34850993.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. Borsellini A, Conti D, Cutts EE, Harris RJ, Walstein K, Graziadei A, Cecatiello V, Aarts TF, Xie R, Mazouzi A, Sen S, Hoencamp C, Pleuger R, Ghetti S, Oberste-Lehn L, Pan D, Bange T, Haarhuis JHI, Perrakis A, Brummelkamp TR, Rowland BD, Musacchio A, Vannini A (2025). "Condensin II activation by M18BP1". Mol Cell. 85 (14): S1097‑2765(25)00543‑X. doi: 10.1016/j.molcel.2025.06.014 . PMID   40614722.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. Cuylen S, Blaukopf C, Politi AZ, Müller-Reichert T, Neumann B, Poser I, Ellenberg J, Hyman AA, Gerlich DW (2016). "Ki-67 acts as a biological surfactant to disperse mitotic chromosomes". Nature. 535 (7611): 308–312. Bibcode:2016Natur.535..308C. doi:10.1038/nature18610. PMC   4947524 . PMID   27362226.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. Takagi M, Ono T, Natsume T, Sakamoto C, Nakao M, Saitoh N, Kanemaki MT, Hirano T, Imamoto N (2018). "Ki-67 and condensins support the integrity of mitotic chromosomes through distinct mechanisms". J Cell Sci. 131 (6): jcs212092. doi:10.1242/jcs.212092. PMID   29487178.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. Cole A (1967). "Chromosome structure". Theoret Biophys. 1: 305–375.
  43. 1 2 Poirier MG, Monhait T, Marko JF (2002). "Reversible hypercondensation and decondensation of mitotic chromosomes studied using combined chemical-micromechanical techniques". J Cell Biochem. 85 (2): 422–434. doi:10.1002/jcb.10132. PMID   11948697.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003). "Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes". Dev Cell. 5 (2): 323–336. doi: 10.1016/s1534-5807(03)00199-0 . PMID   12919682.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. Ono T, Sakamoto C, Nakao M, Saitoh N, Hirano T (2017). "Condensin II plays an essential role in reversible assembly of mitotic chromosomes in situ". Mol Biol Cell. 28 (21): 2875–2886. doi:10.1091/mbc.E17-04-0252. PMC   5638589 . PMID   28835373.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. 1 2 Witt H, Harju J, Chameau EMJ, Bruinsma CMA, Clement TVM, Nielsen CF, Hickson ID, Peterman EJG, Broedersz CP, Wuite GJL (2024). "Ion-mediated condensation controls the mechanics of mitotic chromosomes". Nat Mater. 23 (11): 1556–1562. Bibcode:2024NatMa..23.1556W. doi:10.1038/s41563-024-01975-0. PMC   11525168 . PMID   39284894.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. Sedat J, Manuelidis L (1978). "A direct approach to the structure of eukaryotic chromosomes". Cold Spring Harb. Symp. Quant. Biol. 42: 331–350. doi:10.1101/sqb.1978.042.01.035. PMID   98280.
  48. Paulson JR, Laemmli UK (1977). "The structure of histone-depleted metaphase chromosomes". Cell. 12 (3): 817–828. doi:10.1016/0092-8674(77)90280-x. PMID   922894.
  49. Marko JF, Siggia ED (1997). "Polymer models of meiotic and mitotic chromosomes". Mol. Biol. Cell. 8 (11): 2217–2231. doi:10.1091/mbc.8.11.2217. PMC   25703 . PMID   9362064.
  50. Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS (2004). "Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure". J. Cell Biol. 166 (6): 775–785. doi:10.1083/jcb.200406049. PMC   2172117 . PMID   15353545.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013). "Organization of the mitotic chromosome". Science. 342 (6161): 948–953. Bibcode:2013Sci...342..948N. doi:10.1126/science.1236083. PMC   4040465 . PMID   24200812.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  52. Eagen KP, Hartl A, Kornberg RD (2015). "Stable chromosome condensation revealed by chromosome conformation capture". Cell. 163 (4): 934–946. doi:10.1016/j.cell.2015.10.026. PMC   4639323 . PMID   26544940.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  53. Kakui Y, Rabinowitz A, Barry DJ, Uhlmann F (2017). "Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast". Nat Genet. 49 (10): 1553–1557. doi:10.1038/ng.3938. PMC   5621628 . PMID   28825727.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  54. Schalbetter SA, Goloborodko A, Fudenberg G, Belton JM, Miles C, Yu M, Dekker J, Mirny L, Baxter J (2017). "SMC complexes differentially compact mitotic chromosomes according to genomic context". Nat Cell Biol. 19 (9): 1071–1080. doi:10.1038/ncb3594. PMC   5640152 . PMID   28825700.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  55. Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, Xie L, Paulson JR, Earnshaw WC, Mirny LA, Dekker J (2018). "A pathway for mitotic chromosome formation". Science. 359 (6376): eaao6135. doi:10.1126/science.aao6135. PMC   5924687 . PMID   29348367.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  56. Zhao H, Shu L, Qin S, Lyu F, Liu F, Lin E, Xia S, Wang B, Wang M, Shan F, Lin Y, Zhang L, Gu Y, Blobel GA, Huang K, Zhang H (2025). "Extensive mutual influences of SMC complexes shape 3D genome folding". Nature. 640 (8058): 543–553. Bibcode:2025Natur.640..543Z. doi:10.1038/s41586-025-08638-3. PMID   40011778.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  57. Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Puǎčeková N, Abad MA, Spanos C, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC (2025). "Rules of engagement for condensins and cohesins guide mitotic chromosome formation". Science. 388 (6743): eadq1709. Bibcode:2025Sci...388q1709S. doi:10.1126/science.adq1709. PMC   12118822 . PMID   40208986.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  58. Kinoshita K, Kobayashi TJ, Hirano T (2015). "Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes". Dev Cell. 33 (1): 94–106. doi:10.1016/j.devcel.2015.01.034. PMID   25850674.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  59. Kinoshita K, Tsubota Y, Tane S, Aizawa Y, Sakata R, Takeuchi K, Shintomi K, Nishiyama T, Hirano T (2022). "A loop extrusion-independent mechanism contributes to condensin I-mediated chromosome shaping". J Cell Biol. 221 (3): e202109016. doi:10.1083/jcb.202109016. PMC   8932526 . PMID   35045152.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  60. Shintomi K, Inoue F, Watanabe H, Ohsumi K, Ohsugi M, Hirano T (2017). "Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts". Science. 356 (6344): 1284–1287. Bibcode:2017Sci...356.1284S. doi:10.1126/science.aam9702. PMID   28522692.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  61. Strick TR, Kawaguchi T, Hirano T (2004). "Real-time detection of single-molecule DNA compaction by condensin I". Curr Biol. 14 (10): 874–880. Bibcode:2004CBio...14..874S. doi:10.1016/j.cub.2004.04.038. PMID   15186743.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  62. Sun M, Amiri H, Tong AB, Shintomi K, Hirano T, Bustamante C, Heald R (2023). "Monitoring the compaction of single DNA molecules in Xenopus egg extract in real time". Proc Natl Acad Sci USA. 120 (12): e2221309120. Bibcode:2023PNAS..12021309S. doi: 10.1073/pnas.2221309120 . PMC   10041109 . PMID   36917660.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  63. Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017). "The condensin complex is a mechanochemical motor that translocates along DNA". Science. 358 (6363): 672–676. Bibcode:2017Sci...358..672T. doi:10.1126/science.aan6516. PMC   5862036 . PMID   28882993.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. Beel AJ, Azubel M, Mattei PJ, Kornberg RD (2021). "Structure of mitotic chromosomes". Mol Cell. 81 (21): 4369–4376.e3. doi:10.1016/j.molcel.2021.08.020. PMC   8571045 . PMID   34520722.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  65. McDonald A, Murre C, Sedat JW (2024). "Helical coiled nucleosome chromosome architectures during cell cycle progression". Proc Natl Acad Sci U S A. 121 (43): e2410584121. Bibcode:2024PNAS..12110584M. doi:10.1073/pnas.2410584121. PMC   11513933 . PMID   39401359.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  66. Beckwith KS, Brunner A, Morero NR, Jungmann R, Ellenberg J (2025). "Nanoscale DNA tracing reveals the self-organization mechanism of mitotic chromosomes". Cell. 186 (6): 1234–1245. doi: 10.1016/j.cell.2025.02.028 . PMC   12127698 . PMID   40132578.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  67. Stamatov R, Uzunova S, Kicheva Y, Karaboeva M, Blagoev T, Stoynov S (2025). "Supra-second tracking and live-cell karyotyping reveal principles of mitotic chromosome dynamics". Nat Cell Biol. 27 (4): 654–667. doi:10.1038/s41556-025-01637-6. PMC   11991918 . PMID   40185948.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  68. Hibino K, Sakai Y, Tamura S, Takagi M, Minami K, Natsume T, Shimazoe MA, Kanemaki MT, Imamoto N, Maeshima K (2024). "Single-nucleosome imaging unveils that condensins and nucleosome-nucleosome interactions differentially constrain chromatin to organize mitotic chromosomes". Nat Commun. 15 (1): 7152. Bibcode:2024NatCo..15.7152H. doi:10.1038/s41467-024-51454-y. PMC   11339268 . PMID   39169041.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  69. Poirier MG, Marko JF (2002). "Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold". Proc Natl Acad Sci U S A. 99 (24): 15393–15397. doi: 10.1073/pnas.232442599 . PMC   137727 . PMID   12438695.
  70. Meijering AEC, Sarlós K, Nielsen CF, Witt H, Harju J, Kerklingh E, Haasnoot GH, Bizard AH, Heller I, Broedersz CP, Liu Y, Peterman EJG, Hickson ID, Wuite GJL (2022). "Nonlinear mechanics of human mitotic chromosomes". Nature. 605 (7910): 545–550. Bibcode:2022Natur.605..545M. doi:10.1038/s41586-022-04666-5. PMC   9117150 . PMID   35508652.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  71. Gerguri T, Fu X, Kakui Y, Khatri BS, Barrington C, Bates PA, Uhlmann F (2021). "Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast". Nucl Acids Res. 49 (3): 1294–1312. doi:10.1093/nar/gkaa1270. PMC   7897502 . PMID   33434270.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  72. Sakai Y, Mochizuki A, Kinoshita K, Hirano T, Tachikawa M. (2018). "Modeling the functions of condensin in chromosome shaping and segregation". PLOS Comput Biol. 14 (6): e1006152. doi: 10.1371/journal.pcbi.1006152. Bibcode:2018PLSCB..14E6152S. doi: 10.1371/journal.pcbi.1006152 . PMC   6005465 . PMID   29912867.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  73. Forte G, Boteva L, Conforto F, Gilbert N, Cook PR, Marenduzzo D (2024). "Bridging condensins mediate compaction of mitotic chromosomes". J Cell Biol. 223 (1): e202209113. doi:10.1083/jcb.202209113. PMC   10655892 . PMID   37976091.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  74. Pereira SL, Grayling RA, Lurz R, Reeve JN (2006). "Archaeal nucleosomes". Proc. Natl. Acad. Sci. USA. 94 (23): 12633–12637. doi: 10.1073/pnas.94.23.12633 . PMC   25063 . PMID   9356501.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  75. Mattiroli F, Bhattacharyya S, Dyer PN, White AE, Sandman K, Burkhart BW, Byrne KR, Lee T, Ahn NG, Santangelo TJ, Reeve JN, Luger K (2017). "Structure of histone-based chromatin in Archaea". Science. 357 (6351): 609–612. Bibcode:2017Sci...357..609M. doi:10.1126/science.aaj1849. PMC   5747315 . PMID   28798032.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  76. Schwab S, Hu Y, van Erp B, Cajili MKM, Hartmann MD, Hernandez Alvarez B, Alva V, Boyle AL, Dame RT (2024). "Histones and histone variant families in prokaryotes". Nat Commun. 15 (1): 7950. Bibcode:2024NatCo..15.7950S. doi:10.1038/s41467-024-52337-y. PMC   11390915 . PMID   39261503.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  77. Graumann PL, Knust T (2009). "Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair". Chromosome Res. 17 (2): 265–275. doi:10.1007/s10577-008-9014-x. PMID   19308706.
  78. Reyes-Lamothe R, Nicolas E, Sherratt DJ (2012). "Chromosome replication and segregation in bacteria". Annu. Rev. Genet. 46: 121–143. doi:10.1146/annurev-genet-110711-155421. PMID   22934648.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  79. Wang X, Montero Llopis P, Rudner DZ (2013). "Organization and segregation of bacterial chromosomes". Nat. Rev. Genet. 14 (3): 191–203. doi:10.1038/nrg3375. PMC   3869393 . PMID   23400100.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  80. Le TB, Imakaev MV, Mirny LA, Laub MT (2013). "High-resolution mapping of the spatial organization of a bacterial chromosome". Science. 342 (6159): 731–734. Bibcode:2013Sci...342..731L. doi:10.1126/science.1242059. PMC   3927313 . PMID   24158908.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  81. Wang X, Le TB, Lajoie BR, Dekker J, Laub MT, Rudner DZ (2015). "Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis". Genes Dev. 29 (15): 1661–1675. doi:10.1101/gad.265876.115. PMC   4536313 . PMID   26253537.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  82. Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R (2018). "Multiscale Structuring of the E. coli Chromosome by Nucleoid-Associated and Condensin Proteins". Cell. 172 (4): 771–783.e18. doi: 10.1016/j.cell.2017.12.027 . PMID   29358050.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  83. Hirano T (2014). "Condensins and the evolution of torsion-mediated genome organization". Trends Cell Biol. 24 (12): 727–733. doi:10.1016/j.tcb.2014.06.007. PMID   25092191.