Core (group theory)

Last updated

In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the p-core of a group.

Contents

The normal core

Definition

For a group G, the normal core or normal interior [1] of a subgroup H is the largest normal subgroup of G that is contained in H (or equivalently, the intersection of the conjugates of H). More generally, the core of H with respect to a subset S G is the intersection of the conjugates of H under S, i.e.

Under this more general definition, the normal core is the core with respect to S =G. The normal core of any normal subgroup is the subgroup itself.

Significance

Normal cores are important in the context of group actions on sets, where the normal core of the isotropy subgroup of any point acts as the identity on its entire orbit. Thus, in case the action is transitive, the normal core of any isotropy subgroup is precisely the kernel of the action.

A core-free subgroup is a subgroup whose normal core is the trivial subgroup. Equivalently, it is a subgroup that occurs as the isotropy subgroup of a transitive, faithful group action.

The solution for the hidden subgroup problem in the abelian case generalizes to finding the normal core in case of subgroups of arbitrary groups.

The p-core

In this section G will denote a finite group, though some aspects generalize to locally finite groups and to profinite groups.

Definition

For a prime p, the p-core of a finite group is defined to be its largest normal p-subgroup. It is the normal core of every Sylow p-subgroup of the group. The p-core of G is often denoted , and in particular appears in one of the definitions of the Fitting subgroup of a finite group. Similarly, the p′-core is the largest normal subgroup of G whose order is coprime to p and is denoted . In the area of finite insoluble groups, including the classification of finite simple groups, the 2′-core is often called simply the core and denoted . This causes only a small amount of confusion, because one can usually distinguish between the core of a group and the core of a subgroup within a group. The p′,p-core, denoted is defined by . For a finite group, the p′,p-core is the unique largest normal p-nilpotent subgroup.

The p-core can also be defined as the unique largest subnormal p-subgroup; the p′-core as the unique largest subnormal p′-subgroup; and the p′,p-core as the unique largest subnormal p-nilpotent subgroup.

The p′ and p′,p-core begin the upper p-series. For sets π1, π2, ..., πn+1 of primes, one defines subgroups Oπ1, π2, ..., πn+1(G) by:

The upper p-series is formed by taking π2i−1 = p′ and π2i = p; there is also a lower p-series. A finite group is said to be p-nilpotent if and only if it is equal to its own p′,p-core. A finite group is said to be p-soluble if and only if it is equal to some term of its upper p-series; its p-length is the length of its upper p-series. A finite group G is said to be p-constrained for a prime p if .

Every nilpotent group is p-nilpotent, and every p-nilpotent group is p-soluble. Every soluble group is p-soluble, and every p-soluble group is p-constrained. A group is p-nilpotent if and only if it has a normal p-complement, which is just its p′-core.

Significance

Just as normal cores are important for group actions on sets, p-cores and p′-cores are important in modular representation theory, which studies the actions of groups on vector spaces. The p-core of a finite group is the intersection of the kernels of the irreducible representations over any field of characteristic p. For a finite group, the p′-core is the intersection of the kernels of the ordinary (complex) irreducible representations that lie in the principal p-block. For a finite group, the p′,p-core is the intersection of the kernels of the irreducible representations in the principal p-block over any field of characteristic p. Also, for a finite group, the p′,p-core is the intersection of the centralizers of the abelian chief factors whose order is divisible by p (all of which are irreducible representations over a field of size p lying in the principal block). For a finite, p-constrained group, an irreducible module over a field of characteristic p lies in the principal block if and only if the p′-core of the group is contained in the kernel of the representation.

Solvable radicals

A related subgroup in concept and notation is the solvable radical. The solvable radical is defined to be the largest solvable normal subgroup, and is denoted . There is some variance in the literature in defining the p′-core of G. A few authors in only a few papers (for instance John G. Thompson's N-group papers, but not his later work) define the p′-core of an insoluble group G as the p′-core of its solvable radical in order to better mimic properties of the 2′-core.

Related Research Articles

In abstract algebra, the center of a group G is the set of elements that commute with every element of G. It is denoted Z(G), from German Zentrum, meaning center. In set-builder notation,

<span class="texhtml mvar" style="font-style:italic;">p</span>-group Group in which the order of every element is a power of p

In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.

<span class="mw-page-title-main">Solvable group</span> Group that can be constructed from abelian groups using extensions

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

<span class="mw-page-title-main">Nilpotent group</span> Group that has an upper central series terminating with G

In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, its central series is of finite length or its lower central series terminates with {1}.

In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula

<span class="mw-page-title-main">Glossary of group theory</span>

A group is a set together with an associative operation that admits an identity element and such that there exists an inverse for every element.

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group

In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example is the subgroup of invertible 2 × 2 integer matrices of determinant 1 in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.

In group theory, restriction forms a representation of a subgroup using a known representation of the whole group. Restriction is a fundamental construction in representation theory of groups. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics. For example, in case of explicit symmetry breaking, the symmetry group of the problem is reduced from the whole group to one of its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of degenerate energy levels into multiplets, as in the Stark or Zeeman effect.

In mathematics, the spectrum of a C*-algebra or dual of a C*-algebraA, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A. A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with xA. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial (i.e. identically 0) representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this is similar to the notion of the spectrum of a ring.

In mathematics, especially in the area of algebra known as group theory, the Fitting subgroupF of a finite group G, named after Hans Fitting, is the unique largest normal nilpotent subgroup of G. Intuitively, it represents the smallest subgroup which "controls" the structure of G when G is solvable. When G is not solvable, a similar role is played by the generalized Fitting subgroupF*, which is generated by the Fitting subgroup and the components of G.

In mathematics, specifically group theory, a subgroup series of a group is a chain of subgroups:

<span class="mw-page-title-main">Representation theory of the Lorentz group</span> Representation of the symmetry group of spacetime in special relativity

The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.

In mathematics, in the field of group theory, a subgroup H of a given group G is a subnormal subgroup of G if there is a finite chain of subgroups of the group, each one normal in the next, beginning at H and ending at G.

In mathematics, a group is supersolvable if it has an invariant normal series where all the factors are cyclic groups. Supersolvability is stronger than the notion of solvability.

In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to. The focal subgroup theorem relates the ideas of transfer and fusion such as described by Otto Grün in. Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.

This is a glossary of algebraic geometry.

<span class="mw-page-title-main">Complexification (Lie group)</span> Universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module

References

  1. Robinson (1996) p.16