DNA-binding protein from starved cells

Last updated
Dps (DNA-binding proteins from starved cells)
DPS 1qgh.png
Structure of the DPS protein ( PDB: 1QGH ). [1]
Identifiers
SymbolDPS
InterPro IPR002177
CDD cd01043

DNA-binding proteins from starved cells (Dps) are bacterial proteins that belong to the ferritin superfamily and are characterized by strong similarities but also distinctive differences with respect to "canonical" ferritins.

Contents

Dps proteins are part of a complex bacterial defence system that protects DNA against oxidative damage and are distributed widely in the bacterial kingdom.

Description

Dps are highly symmetrical dodecameric proteins of 20 kDa characterized from a shell-like structure of 2:3 tetrahedral symmetry assembled from identical subunits with an external diameter of ~ 9 nm and a central cavity of ~ 4.5 nm in diameter. [2] [3] [4] Dps proteins belong to the ferritin superfamily and the DNA protection is afforded by means of a double mechanism:

The first was discovered in Escherichia coli Dps in 1992 [5] and has given the name to the protein family; during stationary phase, Dps binds the chromosome non-specifically, forming a highly ordered and stable Dps-DNA co-crystal within which chromosomal DNA is condensed and protected from diverse damages. [6] The lysine-rich N-terminus is required for self-aggregation as well as for Dps-driven DNA condensation. [7]

The second mode of protection is due to the ability of Dps proteins to bind and oxidize Fe(II) at the characteristic, highly conserved intersubunit ferroxidase center. [8] [9]

The dinuclear ferroxidase centers are located at the interfaces between subunits related by 2-fold symmetry axes. [10] Fe(II) is sequestered and stored in the form of Fe(III) oxyhydroxide mineral, which can be released after reduction. In the mineral iron core up to 500 Fe(III) can be deposited. One hydrogen peroxide oxidizes two Fe2+ ions, which prevents hydroxyl radical production by the Fenton reaction (reaction I):

2 Fe2+ + H2O2 + 2 H+ = 2 Fe3+ + 2 H2O

Dps also protects the cell from UV and gamma ray irradiation, iron and copper toxicity, thermal stress and acid and base shocks. [1] Also shows a weak catalase activity.

DNA condensation

Dps dodecamers can condense DNA in vitro through a cooperative binding mechanism. Deletion of portions of the N-terminus [7] or mutation of key lysine residues in the N-terminus [11] can impair or eliminate the condensation activity of Dps. Single molecule studies have shown that Dps-DNA complexes can get trapped in long-lived metastable states that exhibit hysteresis. [12] Because of this, the extent of DNA condensation by Dps can depend not only on the current buffer conditions but also on the conditions in the past. A modified Ising model can be used to explain this binding behavior. The nucleation of Dps condensation on DNA requires multiple DNA strands close proximity (similar size as Dps). For instance, Dps shows higher preference towards supercoiled DNA where two DNA strands are in closer vicinity. [13]

Expression

In Escherichia coli Dps protein is Induced by rpoS and IHF in the early stationary phase. Dps is also Induced by oxyR in response to oxidative stress during exponential phase. ClpXP probably directly regulate proteolysis of dps during exponential phase. ClpAP seems to play an indirect role in maintaining ongoing dps synthesis during stationary phase

Applications

For nanoparticle synthesis

Cavities formed by Dps and ferritin proteins have been successfully used as the reaction chamber for the fabrication of metal nanoparticles (NPs). [14] [15] [16] [17] Protein shells served as a template to restrain particle growth and as a coating to prevent coagulation/aggregation between NPs. Using various sizes of protein shells, various sizes of NPs can be easily synthesized for chemical, physical and bio-medical applications.

For enzyme encapsulation

Nature utilizes protein-based architectures to house enzymes within its interior cavity, for example: encapsulin and carboxysomes. Taking inspiration from nature, hollow interior cavity of Dps and ferritin cages have also been used to encapsulate enzymes. [18] Cytochrome C, a hemoprotein with peroxidase-like activity when encapsulated inside Dps cage showed better catalytic activity over broad pH range compared to free enzyme in bulk solution. This behavior was attributed to high local concentration of enzyme inside Dps and unique microenvironment provided by Dps interior cavity. [19]

For targeted drug delivery

Delivery of cargo at intended target site remains major concern for targeted drug delivery owing to presence of biological barriers and enhanced permeability and retention (EPR) effects. Furthermore, formation of protein corona around injected nanoparticles is also a topic of interest within the targeted delivery field. Researchers tried to overcome these concerns by using natural bio-distribution of protein cage nanoparticles for cargo delivery. For example, DNA binding protein from nutrient starved cells (Dps) cage was shown to cross glomerular filtration barrier and target renal proximal tubules. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Cytochrome c</span> Protein-coding gene in the species Homo sapiens

The cytochrome complex, or cyt c, is a small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. It transfers electrons between Complexes III and IV. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis. In humans, cytochrome c is encoded by the CYCS gene.

<span class="mw-page-title-main">Ferritin</span> Iron-carrying protein

Ferritin is a universal intracellular protein that stores iron and releases it in a controlled fashion. The protein is produced by almost all living organisms, including archaea, bacteria, algae, higher plants, and animals. It is the primary intracellular iron-storage protein in both prokaryotes and eukaryotes, keeping iron in a soluble and non-toxic form. In humans, it acts as a buffer against iron deficiency and iron overload.

<span class="mw-page-title-main">Nucleoid</span> Region within a prokaryotic cell containing genetic material

The nucleoid is an irregularly shaped region within the prokaryotic cell that contains all or most of the genetic material. The chromosome of a typical prokaryote is circular, and its length is very large compared to the cell dimensions, so it needs to be compacted in order to fit. In contrast to the nucleus of a eukaryotic cell, it is not surrounded by a nuclear membrane. Instead, the nucleoid forms by condensation and functional arrangement with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling. The length of a genome widely varies and a cell may contain multiple copies of it.

<span class="mw-page-title-main">Ribonucleotide reductase</span> Class of enzymes

Ribonucleotide reductase (RNR), also known as ribonucleoside diphosphate reductase, is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. It catalyzes this formation by removing the 2'-hydroxyl group of the ribose ring of nucleoside diphosphates. This reduction produces deoxyribonucleotides. Deoxyribonucleotides in turn are used in the synthesis of DNA. The reaction catalyzed by RNR is strictly conserved in all living organisms. Furthermore, RNR plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. A somewhat unusual feature of the RNR enzyme is that it catalyzes a reaction that proceeds via a free radical mechanism of action. The substrates for RNR are ADP, GDP, CDP and UDP. dTDP is synthesized by another enzyme from dTMP.

DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase and is a subclass of Type II topoisomerases that reduces topological strain in an ATP dependent manner while double-stranded DNA is being unwound by elongating RNA-polymerase or by helicase in front of the progressing replication fork. It is the only known enzyme to actively contribute negative supercoiling to DNA, while it also is capable of relaxing positive supercoils. It does so by looping the template to form a crossing, then cutting one of the double helices and passing the other through it before releasing the break, changing the linking number by two in each enzymatic step. This process occurs in bacteria, whose single circular DNA is cut by DNA gyrase and the two ends are then twisted around each other to form supercoils. Gyrase is also found in eukaryotic plastids: it has been found in the apicoplast of the malarial parasite Plasmodium falciparum and in chloroplasts of several plants. Bacterial DNA gyrase is the target of many antibiotics, including nalidixic acid, novobiocin, albicidin, and ciprofloxacin.

<span class="mw-page-title-main">DNA polymerase II</span> Class of enzymes

DNA polymerase II is a prokaryotic DNA-dependent DNA polymerase encoded by the PolB gene.

Bacterioferritin (Bfr) is an oligomeric protein containing both a binuclear iron centre and haem b. The tertiary and quaternary structure of Bfr is very similar to that of ferritin. The physiological functions of BFR, which may be other than just iron uptake, are not clear.

The gene rpoS encodes the sigma factor sigma-38, a 37.8 kD protein in Escherichia coli. Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. rpoS is transcribed in late exponential phase, and RpoS is the primary regulator of stationary phase genes. RpoS is a central regulator of the general stress response and operates in both a retroactive and a proactive manner: it not only allows the cell to survive environmental challenges, but it also prepares the cell for subsequent stresses (cross-protection). The transcriptional regulator CsgD is central to biofilm formation, controlling the expression of the curli structural and export proteins, and the diguanylate cyclase, adrA, which indirectly activates cellulose production. The rpoS gene most likely originated in the gammaproteobacteria.

The adaptive response is a DNA damage response pathway prevalent across bacteria that protects DNA from damage by external agents or by errors during replication. It is initiated specifically against alkylation, particularly methylation, of guanine or thymine nucleotides or phosphate groups on the sugar-phosphate backbone of DNA. Under sustained exposure to low-level treatment with alkylating mutagens, bacteria can adapt to the presence of the mutagen, rendering subsequent treatment with high doses of the same agent less effective.

<span class="mw-page-title-main">2,4 Dienoyl-CoA reductase</span> Class of enzymes

2,4 Dienoyl-CoA reductase also known as DECR1 is an enzyme which in humans is encoded by the DECR1 gene which resides on chromosome 8. This enzyme catalyzes the following reactions

<span class="mw-page-title-main">Iron-responsive element-binding protein</span> Protein family

The iron-responsive element-binding proteins, also known as IRE-BP, IRBP, IRP and IFR , bind to iron-responsive elements (IREs) in the regulation of human iron metabolism.

<span class="mw-page-title-main">Nitric oxide dioxygenase</span>

Nitric oxide dioxygenase (EC 1.14.12.17) is an enzyme that catalyzes the conversion of nitric oxide (NO) to nitrate (NO
3
) . The net reaction for the reaction catalyzed by nitric oxide dioxygenase is shown below:

<span class="mw-page-title-main">Malate synthase</span> Class of enzymes

In enzymology, a malate synthase (EC 2.3.3.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Biocrystallization</span>

Biocrystallization is the formation of crystals from organic macromolecules by living organisms. This may be a stress response, a normal part of metabolism such as processes that dispose of waste compounds, or a pathology. Template mediated crystallization is qualitatively different from in vitro crystallization. Inhibitors of biocrystallization are of interest in drug design efforts against lithiasis and against pathogens that feed on blood, since many of these organisms use this process to safely dispose of heme.

<span class="mw-page-title-main">T7 DNA polymerase</span> Enzyme

T7 DNA polymerase is an enzyme used during the DNA replication of the T7 bacteriophage. During this process, the DNA polymerase “reads” existing DNA strands and creates two new strands that match the existing ones. The T7 DNA polymerase requires a host factor, E. coli thioredoxin, in order to carry out its function. This helps stabilize the binding of the necessary protein to the primer-template to improve processivity by more than 100-fold, which is a feature unique to this enzyme. It is a member of the Family A DNA polymerases, which include E. coli DNA polymerase I and Taq DNA polymerase.

<span class="mw-page-title-main">Ars operon</span>

In molecular biology, the ars operon is an operon found in several bacterial taxon. It is required for the detoxification of arsenate, arsenite, and antimonite. This system transports arsenite and antimonite out of the cell. The pump is composed of two polypeptides, the products of the arsA and arsB genes. This two-subunit enzyme produces resistance to arsenite and antimonite. Arsenate, however, must first be reduced to arsenite before it is extruded. A third gene, arsC, expands the substrate specificity to allow for arsenate pumping and resistance. ArsC is an approximately 150-residue arsenate reductase that uses reduced glutathione (GSH) to convert arsenate to arsenite with a redox active cysteine residue in the active site. ArsC forms an active quaternary complex with GSH, arsenate, and glutaredoxin 1 (Grx1). The three ligands must be present simultaneously for reduction to occur.

<span class="mw-page-title-main">ZinT protein domain</span> Family of protein domains found in prokaryotes

In molecular biology, ZinT is a family of protein domains found in prokaryotes. The domain contains a single binding site that can accommodate a divalent cation, with a geometry suggestive of zinc binding. This family was first thought to be part of the bacterial response to a toxic heavy metal cadmium by binding to the metal to ensure its elimination; however, more recent work has suggested a role in zinc homeostasis.

Oxidation response is stimulated by a disturbance in the balance between the production of reactive oxygen species and antioxidant responses, known as oxidative stress. Active species of oxygen naturally occur in aerobic cells and have both intracellular and extracellular sources. These species, if not controlled, damage all components of the cell, including proteins, lipids and DNA. Hence cells need to maintain a strong defense against the damage. The following table gives an idea of the antioxidant defense system in bacterial system.

<span class="mw-page-title-main">Universal stress protein</span>

The universal stress protein (USP) domain is a superfamily of conserved genes which can be found in bacteria, archaea, fungi, protozoa and plants. Proteins containing the domain are induced by many environmental stressors such as nutrient starvation, drought, extreme temperatures, high salinity, and the presence of uncouplers, antibiotics and metals.

<span class="mw-page-title-main">ZnuABC</span> Class of transport proteins

ZnuABC is a high-affinity transporter specialized for transporting zinc ions as part of a system for metal ion homeostasis in bacteria. The complex is a member of the ATP-binding cassette (ABC) transporter protein family. The transporter contains three protein components:

References

  1. 1 2 Ilari A, Stefanini S, Chiancone E, Tsernoglou D (January 2000). "The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site". Nature Structural Biology. 7 (1): 38–43. doi:10.1038/71236. PMID   10625425. S2CID   52872968.
  2. Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM (April 1998). "The crystal structure of Dps, a ferritin homolog that binds and protects DNA". Nature Structural Biology. 5 (4): 294–303. doi:10.1038/nsb0498-294. PMID   9546221. S2CID   26711707.
  3. Chiancone E, Ceci P (August 2010). "The multifaceted capacity of Dps proteins to combat bacterial stress conditions: Detoxification of iron and hydrogen peroxide and DNA binding". Biochimica et Biophysica Acta (BBA) - General Subjects. 1800 (8): 798–805. doi:10.1016/j.bbagen.2010.01.013. PMID   20138126.
  4. Chiancone E, Ceci P (January 2010). "Role of Dps (DNA-binding proteins from starved cells) aggregation on DNA". Frontiers in Bioscience. 15 (1): 122–31. doi: 10.2741/3610 . PMID   20036810.
  5. Almirón M, Link AJ, Furlong D, Kolter R (December 1992). "A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli". Genes & Development. 6 (12B): 2646–54. doi: 10.1101/gad.6.12b.2646 . PMID   1340475.
  6. Wolf SG, Frenkiel D, Arad T, Finkel SE, Kolter R, Minsky A (July 1999). "DNA protection by stress-induced biocrystallization". Nature. 400 (6739): 83–5. Bibcode:1999Natur.400...83W. doi:10.1038/21918. PMID   10403254. S2CID   204994265.
  7. 1 2 Ceci P, Cellai S, Falvo E, Rivetti C, Rossi GL, Chiancone E (2004). "DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus". Nucleic Acids Research. 32 (19): 5935–44. doi:10.1093/nar/gkh915. PMC   528800 . PMID   15534364.
  8. Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND (August 2002). "Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli". The Journal of Biological Chemistry. 277 (31): 27689–96. doi: 10.1074/jbc.M202094200 . PMID   12016214.
  9. Ceci P, Ilari A, Falvo E, Chiancone E (May 2003). "The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage: x-ray crystal structure, iron binding, and hydroxyl-radical scavenging properties". The Journal of Biological Chemistry. 278 (22): 20319–26. doi: 10.1074/jbc.M302114200 . PMID   12660233.
  10. Nair S, Finkel SE (July 2004). "Dps protects cells against multiple stresses during stationary phase". Journal of Bacteriology. 186 (13): 4192–8. doi:10.1128/JB.186.13.4192-4198.2004. PMC   421617 . PMID   15205421.
  11. Karas VO, Westerlaken I, Meyer AS (October 2015). "The DNA-Binding Protein from Starved Cells (Dps) Utilizes Dual Functions To Defend Cells against Multiple Stresses". Journal of Bacteriology. 197 (19): 3206–15. doi:10.1128/JB.00475-15. PMC   4560292 . PMID   26216848.
  12. Vtyurina NN, Dulin D, Docter MW, Meyer AS, Dekker NH, Abbondanzieri EA (May 2016). "Hysteresis in DNA compaction by Dps is described by an Ising model". Proceedings of the National Academy of Sciences of the United States of America. 113 (18): 4982–7. Bibcode:2016PNAS..113.4982V. doi: 10.1073/pnas.1521241113 . PMC   4983820 . PMID   27091987.
  13. Shahu, Sneha (2024). "Bridging DNA contacts allow Dps from E. coli to condense DNA". Nucleic Acids Research. doi: 10.1093/nar/gkae223 . PMC   11077075 . Retrieved 2024-04-15.
  14. Allen M, Willits D, Mosolf J, Young M, Douglas T (2002). "Protein Cage Constrained Synthesis of Ferrimagnetic Iron Oxide Nanoparticles". Advanced Materials. 14 (21): 1562–1565. doi:10.1002/1521-4095(20021104)14:21<1562::AID-ADMA1562>3.0.CO;2-D.
  15. Allen M, Willits D, Young M, Douglas T (October 2003). "Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua". Inorganic Chemistry. 42 (20): 6300–5. doi:10.1021/ic0343657. PMID   14514305.
  16. Ceci P, Chiancone E, Kasyutich O, Bellapadrona G, Castelli L, Fittipaldi M, Gatteschi D, Innocenti C, Sangregorio C (January 2010). "Synthesis of iron oxide nanoparticles in Listeria innocua Dps (DNA-binding protein from starved cells): a study with the wild-type protein and a catalytic centre mutant". Chemistry: A European Journal. 16 (2): 709–17. doi:10.1002/chem.200901138. PMID   19859920.
  17. Prastaro A, Ceci P, Chiancone E, Boffi A, Cirilli R, Colone M, Fabrizi G, Stringaro A, Cacchi S (2009). "Suzuki-Miyaura cross-coupling catalyzed by protein-stabilized palladium nanoparticles under aerobic conditions in water: application to a one-pot chemoenzymatic enantioselective synthesis of chiral biaryl alcohols". Green Chemistry. 11 (12): 1929. doi:10.1039/b915184b.
  18. Tetter S, Hilvert D (November 2017). "Enzyme Encapsulation by a Ferritin Cage". Angewandte Chemie. 56 (47): 14933–14936. doi:10.1002/anie.201708530. PMID   28902449.
  19. Waghwani HK, Douglas, T (March 2021). "Cytochrome C with peroxidase-like activity encapsulated inside the small DPS protein nanocage". Journal of Materials Chemistry B. 9 (14): 3168–3179. doi: 10.1039/d1tb00234a . PMID   33885621.
  20. Uchida M, Maier B, Waghwani HK, Selivanovitch E, Pay SL, Avera J, Yun E, Sandoval RM, Molitoris BA, Zollman A, Douglas T, Hato, T (September 2019). "The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration". Journal of Clinical Investigation. 129 (9): 3941–3951. doi: 10.1172/JCI127511 . PMC   6715384 . PMID   31424427.