Dante | |
---|---|
Manufacturer Info | |
Manufacturer | Audinate Pty. Ltd. |
Development date | 2006 |
Network Compatibility | |
Switchable | Yes |
Routable | Yes [a] |
Ethernet data rates | Fast Ethernet, Gigabit Ethernet |
Audio Specifications | |
Minimum latency | 150 μs [1] |
Maximum channels per link | 1024 (512x512) |
Maximum sampling rate | 192 kHz [2] [3] |
Maximum bit depth | 32 bits [4] |
Dante is the product name for a combination of software, hardware, and network protocols that delivers uncompressed, multi-channel, low-latency digital audio over a standard Ethernet network using Layer 3 IP packets. [5] Developed in 2006 by the Sydney-based Audinate, Dante builds on previous audio over Ethernet and audio over IP technologies.
Like most other audio over Ethernet technologies, Dante is primarily for professional, commercial applications. Most often, it is used in applications where a large number of audio channels must be transmitted over relatively long distances or to multiple locations.
Digital audio provides several advantages over traditional analog audio distribution. Audio transmitted over analog cables can be adversely affected by signal degradation due to electromagnetic interference, high-frequency attenuation, and voltage drop over long cable runs. Thanks to digital multiplexing, the cabling requirements for digital audio distribution are almost always reduced when compared to analog audio. Dante also provides specific advantages over first-generation audio over Ethernet technologies, such as CobraNet and EtherSound. Technological advancements include native gigabit support, [6] higher channel count, lower latency, and automatic configuration.
After Motorola closed an Australian research facility in 2003, current Audinate CEO Aidan Williams brought a team of researchers to the National Information and Communication Technology Australia (NICTA) research centre in Sydney, Australia. There, with the help of government funding, the team spent three years developing the foundations of Dante. In 2006, Williams founded Audinate and began the process of bringing Dante to the market. [7]
Audinate received funding from NICTA until negotiations concluded in 2006, at which point Audinate became NICTA's first successful spin-out company. [8] Since 2006, Audinate has also secured two rounds of A$4 million investments led by venture capital firms Starfish Ventures and Innovation Capital. [9] [10] In 2009, Audinate established an office in Portland, Oregon and also has offices in Cambridge (UK) [11] and Hong Kong. [12]
As of March 2021 [update] Audinate has licensed 350 companies, which have produced over 3000 products [13] that incorporate Dante technology. [14]
Audinate offers Dante technology on a number of hardware and software platforms.
Third-party software and hardware companies that sell Dante solutions must license it from Audinate.
A field-programmable gate array (FPGA) is a type of configurable integrated circuit that can be repeatedly programmed after manufacturing. FPGAs are a subset of logic devices referred to as programmable logic devices (PLDs). They consist of an array of programmable logic blocks with a connecting grid, that can be configured "in the field" to interconnect with other logic blocks to perform various digital functions. FPGAs are often used in limited (low) quantity production of custom-made products, and in research and development, where the higher cost of individual FPGAs is not as important, and where creating and manufacturing a custom circuit wouldn't be feasible. Other applications for FPGAs include the telecommunications, automotive, aerospace, and industrial sectors, which benefit from their flexibility, high signal processing speed, and parallel processing abilities.
Digital subscriber line is a family of technologies that are used to transmit digital data over telephone lines. In telecommunications marketing, the term DSL is widely understood to mean asymmetric digital subscriber line (ADSL), the most commonly installed DSL technology, for Internet access.
In radio communication, a transceiver is an electronic device which is a combination of a radio transmitter and a receiver, hence the name. It can both transmit and receive radio waves using an antenna, for communication purposes. These two related functions are often combined in a single device to reduce manufacturing costs. The term is also used for other devices which can both transmit and receive through a communications channel, such as optical transceivers which transmit and receive light in optical fiber systems, and bus transceivers which transmit and receive digital data in computer data buses.
Category 5 cable (Cat 5) is a twisted pair cable for computer networks. Since 2001, the variant commonly in use is the Category 5e specification (Cat 5e). The cable standard provides performance of up to 100 MHz and is suitable for most varieties of Ethernet over twisted pair up to 2.5GBASE-T but more commonly runs at 1000BASE-T speeds. Cat 5 is also used to carry other signals such as telephone and video.
Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit resolution. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s.
In the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer: the layer most closely associated with the physical connection between devices. The physical layer provides an electrical, mechanical, and procedural interface to the transmission medium. The shapes and properties of the electrical connectors, the frequencies to transmit on, the line code to use and similar low-level parameters, are specified by the physical layer.
In telecommunications, broadband or high speed is the wide-bandwidth data transmission that exploits signals at a wide spread of frequencies or several different simultaneous frequencies, and is used in fast Internet access. The transmission medium can be coaxial cable, optical fiber, wireless Internet (radio), twisted pair cable, or satellite.
A network interface controller is a computer hardware component that connects a computer to a computer network.
A stage box is an interface device used in sound reinforcement and recording studios to connect equipment to a mixing console. It provides a central location to connect microphones, instruments, and speakers to a multicore cable (snake), which allows the sound desk to be further from the stage and simplifies setup.
Show control is the use of automation technology to link together and operate multiple entertainment control systems in a coordinated manner. It is distinguished from an entertainment control system, which is specific to a single theatrical department, system or effect, one which coordinates elements within a single entertainment discipline such as lighting, sound, video, rigging, or pyrotechnics. A typical entertainment control system would be a lighting control console. An example of show control would be linking a video segment with a number of lighting cues, or having a sound cue trigger animatronic movements, or all of these combined. Shows with or without live actors can almost invariably incorporate entertainment control technology and usually benefit from show control to operate these subsystems independently, simultaneously, or in rapid succession.
International standard ISO/IEC 11801Information technology — Generic cabling for customer premises specifies general-purpose telecommunication cabling systems that are suitable for a wide range of applications. It is published by ISO/IEC JTC 1/SC 25/WG 3 of the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). It covers both balanced copper cabling and optical fibre cabling.
In audio and broadcast engineering, audio over Ethernet (AoE) is the use of an Ethernet-based network to distribute real-time digital audio. AoE replaces bulky snake cables or audio-specific installed low-voltage wiring with standard network structured cabling in a facility. AoE provides a reliable backbone for any audio application, such as for large-scale sound reinforcement in stadiums, airports and convention centers, multiple studios or stages.
40 Gigabit Ethernet (40GbE) and 100 Gigabit Ethernet (100GbE) are groups of computer networking technologies for transmitting Ethernet frames at rates of 40 and 100 gigabits per second (Gbit/s), respectively. These technologies offer significantly higher speeds than 10 Gigabit Ethernet. The technology was first defined by the IEEE 802.3ba-2010 standard and later by the 802.3bg-2011, 802.3bj-2014, 802.3bm-2015, and 802.3cd-2018 standards. The first succeeding Terabit Ethernet specifications were approved in 2017.
EtherSound is an audio-over-Ethernet technology for audio engineering and broadcast engineering applications. EtherSound is developed and licensed by Digigram. EtherSound is intended by the developer to be compliant with IEEE 802.3 Ethernet standards. Just as the IEEE defines rates such as 100 Megabit and Gigabit Ethernet standards, EtherSound has been developed as both ES-100 and ES-Giga. The two versions of EtherSound are not compatible.
CobraNet is a combination of software, hardware, and network protocols designed to deliver uncompressed, multi-channel, low-latency digital audio over a standard Ethernet network. Developed in the 1990s, CobraNet is widely regarded as the first commercially successful audio-over-Ethernet implementation.
DisplayLink Corp. is a semiconductor and software technology company. It specializes in developing DisplayLink USB graphics technology, enabling connections between computers and displays via USB, Ethernet, and WiFi. Additionally, it supports the connection of multiple displays to a single computer.
IEEE 1394 is an interface standard for a serial bus for high-speed communications and isochronous real-time data transfer. It was developed in the late 1980s and early 1990s by Apple in cooperation with a number of companies, primarily Sony and Panasonic. It is most commonly known by the name FireWire (Apple), though other brand names exist such as i.LINK (Sony), and Lynx.
HDBaseT is a consumer electronic (CE) and commercial connectivity standard for transmission of uncompressed ultra-high-definition video, digital audio, DC power, Ethernet, USB 2.0, and other control communication over a single category cable up to 100 m (328 ft) in length, terminated using 8P8C modular connectors. The conductors, cable, and connectors are as used in Ethernet networks, but are not otherwise exchangeable. HDBaseT technology is promoted and advanced by the HDBaseT Alliance.
IEEE 802.3bz, NBASE-T and MGBASE-T are standards released in 2016 for Ethernet over twisted pair at speeds of 2.5 and 5 Gbit/s. These use the same cabling as the ubiquitous Gigabit Ethernet, yet offer higher speeds. The resulting standards are named 2.5GBASE-T and 5GBASE-T.
AES50 is an Audio over Ethernet protocol for multichannel digital audio. It is defined in the AES50-2011 standard for High-resolution multi-channel audio interconnection (HRMAI).