Deep Earth Carbon Degassing Project

Last updated

The Deep Earth Carbon Degassing (DECADE) project is an initiative to unite scientists around the world to make tangible advances towards quantifying the amount of carbon outgassed from the Earth's deep interior (core, mantle, crust) into the surface environment (e.g. biosphere, hydrosphere, cryosphere, atmosphere) through naturally occurring processes. DECADE is an initiative within the Deep Carbon Observatory (DCO).

Contents

Volcanoes are the main pathway in which deeply sourced volatiles, including carbon, are transferred from the Earth's interior to the surface environment. [1] An additional, though less well understood, pathway includes along faults and fractures within the Earth's crust, [2] often referred to as tectonic degassing. When the DCO was first formed in 2009 estimates of global carbon flux from volcanic regions ranged from 65 to 540 Mt/yr, [2] and constraints on global tectonic degassing were virtually unknown. [2] The order of magnitude uncertainty in current volcanic/tectonic carbon outgassing makes answering fundamental questions about the global carbon budget virtually impossible. In particular, one fundamental unknown is if carbon transferred to the Earth's interior via subduction is efficiently recycled back to the Earth's mantle lithosphere, crust and surface environment through volcanic and tectonic degassing, or if significant quantities of carbon are being subducted into the deep mantle. [3] Because significant quantities of mantle carbon are also released through mid-ocean ridge volcanism, if carbon inputs and outputs at subduction zone settings are in balance, then the net effect will be an imbalance in the global carbon budget, with carbon being preferentially removed from the Earth's deep interior and redistributed to more shallow reservoirs including the mantle lithosphere, crust, hydrosphere and atmosphere. The implications of this may mean that carbon concentrations in the surface environment are increasing over Earth's history, which has significant implications for climate change.

Findings from the DECADE project will increase our understanding of the way carbon cycles through deep Earth, and patterns in volcanic emissions data could potentially alert scientists to an impending eruption. [4]

Project goals

The main goal of the DECADE project is to refine estimates of global carbon outgassing using a multipronged approach. Specifically, the DECADE initiative unites scientists with expertise in geochemistry, petrology and volcanology to provide constraints on the global volcanic carbon flux by 1) establishing a database of volcanic and hydrothermal gas compositions and fluxes linked to EarthChem/PetDB and the Smithsonian Global Volcanism Program, 2) building a global monitoring network to continuously measure the volcanic carbon flux of 20 active volcanoes, 3) measure the carbon flux of remote volcanoes, for which no or only sparse data are currently available, 4) develop new field and analytical instrumentation for carbon measurements and flux monitoring, and 5) establish formal collaborations with volcano observatories around the world to support volcanic gas measurement and monitoring activities. [5]

History

The DECADE initiative was conceived in September 2011 by the International Association of Volcanology and Chemistry of the Earth's Interior Commission on the Chemistry of Volcanic Gases during its 11th field workshop. [6] Here the charge of the initiative was broadly defined and the governance structure established. The DECADE receives financial support from Deep Carbon Observatory to meet the project goals, with support distributed to DECADE members based on project proposal submission and external review and/or consensus by the Board of Directors. All projects are significantly matched by funding sources from the individual investigators or other funding agencies. The initiative is led by a Board of Directors that has nine members including one chair and two co-vice chairs. Currently the DECADE initiative has around 80 members from 13 countries.

Achievements

As of 2020, major achievements supported or partially supported by the DECADE initiative include:

Volcanoes

The following volcanoes are currently monitored by the DECADE initiative:

VolcanoCountryNotes
Masaya Volcano Nicaragua
Popocatépetl Mexico
Galeras Colombia
Nevado del Ruiz Colombia
Villarrica Volcano Chile Equipment was destroyed by Villarrica's 2015 eruption.
Turrialba Costa Rica
Poás Costa Rica
Mount Merapi Indonesia
White Island New Zealand

Map of the DCO DECADE project volcano installations

DCO Decade Volcano Monitoring Installations, September 2016.jpg

See also

Related Research Articles

<span class="mw-page-title-main">Volcano</span> Rupture in a planets crust where material escapes

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

<span class="mw-page-title-main">Carbon cycle</span> Natural processes of carbon exchange

The carbon cycle is that part of the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Other major biogeochemical cycles include the nitrogen cycle and the water cycle. Carbon is the main component of biological compounds as well as a major component of many minerals such as limestone. The carbon cycle comprises a sequence of events that are key to making Earth capable of sustaining life. It describes the movement of carbon as it is recycled and reused throughout the biosphere, as well as long-term processes of carbon sequestration (storage) to and release from carbon sinks.

<span class="mw-page-title-main">Lake Nyos</span> Crater lake in the Northwest Region of Cameroon

Lake Nyos is a crater lake in the Northwest Region of Cameroon, located about 315 km (196 mi) northwest of Yaoundé, the capital. Nyos is a deep lake high on the flank of an inactive volcano in the Oku volcanic plain along the Cameroon line of volcanic activity. A volcanic dam impounds the lake waters.

<span class="mw-page-title-main">Mammoth Mountain</span> Lava dome in the Sierra Nevada of California, United States

Mammoth Mountain is a lava dome complex partially located within the town of Mammoth Lakes, California, in the Inyo National Forest of Madera and Mono Counties. It is home to a large ski area primarily on the Mono County side.

<span class="mw-page-title-main">Olca</span>

Olca is a stratovolcano on the border of Chile and Bolivia. It lies in the middle of a 15 km long ridge composed of several stratovolcanos. Cerro Minchincha lies to the west and Paruma to the east. It is also close to the pre-Holocene Cerro Paruma. It is andesitic and dacitic in composition, with lava flows extending several kilometres north of the peak. The only activity from the ridge during historical times was a flank eruption from 1865 to 1867. The exact source of this eruption is unclear.

<span class="mw-page-title-main">Limnic eruption</span> Type of natural disaster

A limnic eruption, also known as a lake overturn, is a very rare type of natural disaster in which dissolved carbon dioxide suddenly erupts from deep lake waters, forming a gas cloud capable of asphyxiating wildlife, livestock, and humans. A limnic eruption may also cause tsunamis or seiches as the rising CO2 displaces water. Scientists believe earthquakes, volcanic activity, and other explosive events can serve as triggers for limnic eruptions. Lakes in which such activity occurs are referred to as limnically active lakes or exploding lakes. Some features of limnically active lakes include:

<span class="mw-page-title-main">Effusive eruption</span> Type of volcanic eruption characterized by steady lava flow

An effusive eruption is a type of volcanic eruption in which lava steadily flows out of a volcano onto the ground.

<span class="mw-page-title-main">Volcanic gas</span> Gases given off by active volcanoes

Volcanic gases are gases given off by active volcanoes. These include gases trapped in cavities (vesicles) in volcanic rocks, dissolved or dissociated gases in magma and lava, or gases emanating from lava, from volcanic craters or vents. Volcanic gases can also be emitted through groundwater heated by volcanic action.

<span class="mw-page-title-main">Diatreme</span> Volcanic pipe associated with a gaseous explosion

A diatreme, sometimes known as a maar-diatreme volcano, is a volcanic pipe associated with a gaseous explosion. When magma rises up through a crack in Earth's crust and makes contact with a shallow body of groundwater, rapid expansion of heated water vapor and volcanic gases can cause a series of explosions. A relatively shallow crater is left, and a rock-filled fracture in the crust. Where diatremes breach the surface they produce a steep, inverted cone shape.

<span class="mw-page-title-main">Lascar (volcano)</span> A stratovolcano within the Central Volcanic Zone of the Andes

Lascar is a stratovolcano in Chile within the Central Volcanic Zone of the Andes, a volcanic arc that spans Peru, Bolivia, Argentina and Chile. It is the most active volcano in the region, with records of eruptions going back to 1848. It is composed of two separate cones with several summit craters. The westernmost crater of the eastern cone is presently active. Volcanic activity is characterized by constant release of volcanic gas and occasional vulcanian eruptions.

<span class="mw-page-title-main">Prediction of volcanic activity</span> Research to predict volcanic activity

Prediction of volcanic activity, or volcanic eruption forecasting, is an interdisciplinary monitoring and research effort to predict the time and severity of a volcano's eruption. Of particular importance is the prediction of hazardous eruptions that could lead to catastrophic loss of life, property, and disruption of human activities.

Tectonic–climatic interaction is the interrelationship between tectonic processes and the climate system. The tectonic processes in question include orogenesis, volcanism, and erosion, while relevant climatic processes include atmospheric circulation, orographic lift, monsoon circulation and the rain shadow effect. As the geological record of past climate changes over millions of years is sparse and poorly resolved, many questions remain unresolved regarding the nature of tectonic-climate interaction, although it is an area of active research by geologists and palaeoclimatologists.

The Deep Carbon Observatory (DCO) is a global research program designed to transform understanding of carbon's role in Earth. DCO is a community of scientists, including biologists, physicists, geoscientists and chemists, whose work crosses several traditional disciplinary lines to develop the new, integrative field of deep carbon science. To complement this research, the DCO's infrastructure includes public engagement and education, online and offline community support, innovative data management, and novel instrumentation development.

The magma supply rate measures the production rate of magma at a volcano. Global magma production rates on Earth are about 20–25 cubic kilometres per year (4.8–6.0 cu mi/a).

<span class="mw-page-title-main">Tengchong volcanic field</span> Volcanic field in Yunnan, China

The Tengchong Volcanic Field (TVF) is a Cenozoic volcanic field located in the Southeastern margin of the Tibetan Plateau around 40 km from the Chinese border with Myanmar. The TVF is uniquely the only region affected by Quaternary volcanism that is part of the Himalayan Geothermal Belt caused by the Indo-Asian continent-continent collision. The TVF is characterized by hydrothermal activity and large-scale eruptions last recorded in 1609CE. Although the volcanoes themselves are considered extinct, several geothermal fields geographically linked to the TVF are still highly active. Evidence for geothermal activity can be linked to several prevalent active hot-springs located predominantly within the vicinity of the volcanoes in the TVF. Holocene eruptions occurred predominantly in the three largest volcanoes in the TVF named the Dayingshan, Maa'nshan and Heikongshan, the highest of which (Dayingshan) reaches 2865 meters above sea level. The volcanoes are distributed in a string-like pattern clustered from North to South in the middle on the Tengchong basin and are characterized by post-collisional high-Potassium (K) calc-alkaline series eruptions. The TVF provides unique geographical and geological knowledge as understanding the geological processes of creation provides insight into aspects such as the history of volcanism during the Quaternary Era in the region and as well as compositional information of its source and crustal assimilants. The TVF can be visited in the Tengchong Volcanic Geothermal National Geological Park.`

<span class="mw-page-title-main">Lake Nyos disaster</span> 1986 limnic eruption in Cameroon

On 21 August 1986, a limnic eruption at Lake Nyos in northwestern Cameroon killed 1,746 people and 3,500 livestock.

<span class="mw-page-title-main">Multi-component gas analyzer system</span>

A multi-component gas analyzer system (Multi-GAS) is an instrument package used to take real-time high-resolution measurements of volcanic gases. A Multi-GAS package includes an infrared spectrometer for CO2, two electrochemical sensors for SO2 and H2S, and pressure–temperature–humidity sensors, all in a weatherproof box. The system can be used for individual surveys or set up as permanent stations connected to radio transmitters for transmission of data from remote locations. The instrument package is portable, and its operation and data analysis are simple enough to be conducted by non-specialists.

<span class="mw-page-title-main">Ciomadul</span> Volcano in Romania

Ciomadul is a dormant volcano in Romania. It is in the Eastern Carpathians, between the spa towns of Băile Tușnad and Balvanyos. Ciomadul lies at the southeastern end of the Carpathian volcanic chain and it is the youngest volcano of the Carpatho-Pannonian region. Ciomadul consists of several lava domes with two embedded explosion craters known as Mohoș and Sfânta Ana, the latter of which contains a crater lake, Lake Sfânta Ana. The dominant volcanic rock at Ciomadul is potassium-rich dacite.

Marie Edmonds is a professor of volcanology and geology in the Department of Earth Sciences at the University of Cambridge whose research focuses on the physics and chemistry of volcanic eruptions and magmatism and understanding volatile cycling in the solid Earth as mediated by plate tectonics. She is interested in the social and economic impacts of natural hazards; and the sustainable use of Earth's mineral and energy resources. Professor Edmonds is the Vice President and Ron Oxburgh Fellow in Earth Sciences at Queens' College, Cambridge; and the Deputy Head of Department and Director of Research at the Earth Sciences Department, University of Cambridge.

<span class="mw-page-title-main">Ubinas</span> Volcano in southern Peru

Ubinas is an active stratovolcano in the Moquegua Region of southern Peru, approximately 60 kilometres (37 mi) east of the city of Arequipa. Part of the Central Volcanic Zone of the Andes, it rises 5,672 metres (18,609 ft) above sea level. The volcano's summit is cut by a 1.4-kilometre-wide (0.87 mi) and 150-metre-deep (490 ft) caldera, which itself contains a smaller crater. Below the summit, Ubinas has the shape of an upwards-steepening cone with a prominent notch on the southern side. The gently sloping lower part of the volcano is also known as Ubinas I and the steeper upper part as Ubinas II; they represent different stages in the volcano's geological history.

References

  1. Dasgupta, R. (2013). "Ingassing, Storage, and Outgassing of Terrestrial Carbon through Geologic Time". Reviews in Mineralogy and Geochemistry. 75 (1): 183–220. Bibcode:2013RvMG...75..183D. doi:10.2138/rmg.2013.75.7.
  2. 1 2 3 "Deep carbon emissions from volcanoes, Reviews in Mineralogy and Geochemistry: Carbon in Earth, 75, 323–355" (PDF).
  3. Kelemen, Peter B; Manning, Craig E (2015). "Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up". Proceedings of the National Academy of Sciences of the United States of America . 112 (30): E3997–E4006. Bibcode:2015PNAS..112E3997K. doi: 10.1073/pnas.1507889112 . PMC   4522802 . PMID   26048906.
  4. Sarah Kaplan (2016). "Watch Earth pulse with earthquakes and eruptions in this stunning visualization". Washington Post. Retrieved 10 October 2016.
  5. "Fischer, T. P. (2013), DEep CArbon DEgassing: The Deep Carbon Observatory DECADE Initiative, Mineralogical Magazine, 77(5), 1089".
  6. "11th Field Workshop on Volcanic Gases". Archived from the original on 2016-10-01. Retrieved 2016-09-20.
  7. Allard, Patrick (2016). "Allard, P., M. Burton, G. M. Sawyer, and P. Bani (2016), Degassing dynamics of basaltic lava lake at a top-ranking volatile emitter: Ambrym volcano, Vanuatu arc, Earth & Planetary Science Letters, 448, 69–80". Earth and Planetary Science Letters. 448: 69–80. Bibcode:2016E&PSL.448...69A. doi:10.1016/j.epsl.2016.05.014.
  8. Aiuppa, A. (2015). "First determination of magma-derived gas emissions from Bromo volcano, eastern Java (Indonesia)" (PDF). Journal of Volcanology and Geothermal Research. 304: 206–213. Bibcode:2015JVGR..304..206A. doi:10.1016/j.jvolgeores.2015.09.008. hdl: 10447/172898 .
  9. Bani, Philipson (2015). "First measurement of the volcanic gas output from Anak Krakatau, Indonesia". Journal of Volcanology and Geothermal Research. 302: 237–241. Bibcode:2015JVGR..302..237B. doi:10.1016/j.jvolgeores.2015.07.008. S2CID   128596743.
  10. de Moor, J.M. (2016). "Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica". Earth and Planetary Science Letters. 442: 218–227. Bibcode:2016E&PSL.442..218D. doi: 10.1016/j.epsl.2016.02.056 . hdl: 10447/227127 .
  11. de Moor, J. Maarten; Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; Conde, V. (2016). "Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring". Journal of Geophysical Research: Solid Earth. 121 (8): 5761–5775. Bibcode:2016JGRB..121.5761D. doi: 10.1002/2016jb013150 . ISSN   2169-9313. PMC   5054823 . PMID   27774371.
  12. Fischer, T. P., and T. M. Lopez (2016). "First airborne samples of a volcanic plume for d13C of CO2 determinations". Geophysical Research Letters. 43 (7): 3272–3279. doi: 10.1002/2016GL068499 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Andrade, César (2016). "Estimation of the CO2 flux from Furnas volcanic Lake (São Miguel, Azores)". Journal of Volcanology and Geothermal Research. 315: 51–64. Bibcode:2016JVGR..315...51A. doi:10.1016/j.jvolgeores.2016.02.005.
  14. Fischer, Tobias P.; Arellano, Santiago; Carn, Simon; Aiuppa, Alessandro; Galle, Bo; Allard, Patrick; Lopez, Taryn; Shinohara, Hiroshi; Kelly, Peter; Werner, Cynthia; Cardellini, Carlo (2019). "The emissions of CO2 and other volatiles from the world's subaerial volcanoes". Scientific Reports. 9 (1): 18716. Bibcode:2019NatSR...918716F. doi:10.1038/s41598-019-54682-1. ISSN   2045-2322. PMC   6904619 . PMID   31822683.
  15. Werner, Cynthia; Fischer, Tobias P.; Aiuppa, Alessandro; Edmonds, Marie; Cardellini, Carlo; Carn, Simon; Chiodini, Giovanni; Cottrell, Elizabeth; Burton, Mike (2019), "Carbon Dioxide Emissions from Subaerial Volcanic Regions", Deep Carbon, Cambridge University Press, vol. 2019, pp. 188–236, Bibcode:2019AGUFM.V24C..03W, doi: 10.1017/9781108677950.008 , ISBN   978-1-108-67795-0, S2CID   216584622