In projective geometry, Desargues's theorem, named after Girard Desargues, states:
Denote the three vertices of one triangle by a, b and c, and those of the other by A, B and C. Axial perspectivity means that lines ab and AB meet in a point, lines ac and AC meet in a second point, and lines bc and BC meet in a third point, and that these three points all lie on a common line called the axis of perspectivity. Central perspectivity means that the three lines Aa, Bb and Cc are concurrent, at a point called the center of perspectivity.
This intersection theorem is true in the usual Euclidean plane but special care needs to be taken in exceptional cases, as when a pair of sides are parallel, so that their "point of intersection" recedes to infinity. Commonly, to remove these exceptions, mathematicians "complete" the Euclidean plane by adding points at infinity, following Jean-Victor Poncelet. This results in a projective plane.
Desargues's theorem is true for the real projective plane and for any projective space defined arithmetically from a field or division ring; that includes any projective space of dimension greater than two or in which Pappus's theorem holds. However, there are many "non-Desarguesian planes", in which Desargues's theorem is false.
Desargues never published this theorem, but it appeared in an appendix entitled Universal Method of M. Desargues for Using Perspective (Manière universelle de M. Desargues pour practiquer la perspective) to a practical book on the use of perspective published in 1648. [1] by his friend and pupil Abraham Bosse (1602–1676). [2]
The importance of Desargues's theorem in abstract projective geometry is due especially to the fact that a projective space satisfies that theorem if and only if it is isomorphic to a projective space defined over a field or division ring.
In an affine space such as the Euclidean plane a similar statement is true, but only if one lists various exceptions involving parallel lines. Desargues's theorem is therefore one of the simplest geometric theorems whose natural home is in projective rather than affine space.
By definition, two triangles are perspective if and only if they are in perspective centrally (or, equivalently according to this theorem, in perspective axially). Note that perspective triangles need not be similar.
Under the standard duality of plane projective geometry (where points correspond to lines and collinearity of points corresponds to concurrency of lines), the statement of Desargues's theorem is self-dual: axial perspectivity is translated into central perspectivity and vice versa. The Desargues configuration (below) is a self-dual configuration. [3]
This self-duality in the statement is due to the usual modern way of writing the theorem. Historically, the theorem only read, "In a projective space, a pair of centrally perspective triangles is axially perspective" and the dual of this statement was called the converse of Desargues's theorem and was always referred to by that name. [4]
Desargues's theorem holds for projective space of any dimension over any field or division ring, and also holds for abstract projective spaces of dimension at least 3. In dimension 2 the planes for which it holds are called Desarguesian planes and are the same as the planes that can be given coordinates over a division ring. There are also many non-Desarguesian planes where Desargues's theorem does not hold.
Desargues's theorem is true for any projective space of dimension at least 3, and more generally for any projective space that can be embedded in a space of dimension at least 3.
Desargues's theorem can be stated as follows:
The points A, B, a and b are coplanar (lie in the same plane) because of the assumed concurrency of Aa and Bb. Therefore, the lines AB and ab belong to the same plane and must intersect. Further, if the two triangles lie on different planes, then the point AB ∩ ab belongs to both planes. By a symmetric argument, the points AC ∩ ac and BC ∩ bc also exist and belong to the planes of both triangles. Since these two planes intersect in more than one point, their intersection is a line that contains all three points.
This proves Desargues's theorem if the two triangles are not contained in the same plane. If they are in the same plane, Desargues's theorem can be proved by choosing a point not in the plane, using this to lift the triangles out of the plane so that the argument above works, and then projecting back into the plane. The last step of the proof fails if the projective space has dimension less than 3, as in this case it is not possible to find a point not in the plane.
Monge's theorem also asserts that three points lie on a line, and has a proof using the same idea of considering it in three rather than two dimensions and writing the line as an intersection of two planes.
As there are non-Desarguesian projective planes in which Desargues's theorem is not true, [5] some extra conditions need to be met in order to prove it. These conditions usually take the form of assuming the existence of sufficiently many collineations of a certain type, which in turn leads to showing that the underlying algebraic coordinate system must be a division ring (skewfield). [6]
Pappus's hexagon theorem states that, if a hexagon AbCaBc is drawn in such a way that vertices a, b and c lie on a line and vertices A, B and C lie on a second line, then each two opposite sides of the hexagon lie on two lines that meet in a point and the three points constructed in this way are collinear. A plane in which Pappus's theorem is universally true is called Pappian. Hessenberg (1905) [7] showed that Desargues's theorem can be deduced from three applications of Pappus's theorem. [8]
The converse of this result is not true, that is, not all Desarguesian planes are Pappian. Satisfying Pappus's theorem universally is equivalent to having the underlying coordinate system be commutative. A plane defined over a non-commutative division ring (a division ring that is not a field) would therefore be Desarguesian but not Pappian. However, due to Wedderburn's little theorem, which states that all finite division rings are fields, all finite Desarguesian planes are Pappian. There is no known completely geometric proof of this fact, although Bamberg & Penttila (2015) give a proof that uses only "elementary" algebraic facts (rather than the full strength of Wedderburn's little theorem).
The ten lines involved in Desargues's theorem (six sides of triangles, the three lines Aa, Bb and Cc, and the axis of perspectivity) and the ten points involved (the six vertices, the three points of intersection on the axis of perspectivity, and the center of perspectivity) are so arranged that each of the ten lines passes through three of the ten points, and each of the ten points lies on three of the ten lines. Those ten points and ten lines make up the Desargues configuration, an example of a projective configuration. Although Desargues's theorem chooses different roles for these ten lines and points, the Desargues configuration itself is more symmetric: any of the ten points may be chosen to be the center of perspectivity, and that choice determines which six points will be the vertices of triangles and which line will be the axis of perspectivity.
This restricted version states that if two triangles are perspective from a point on a given line, and two pairs of corresponding sides also meet on this line, then the third pair of corresponding sides meet on the line as well. Thus, it is the specialization of Desargues's Theorem to only the cases in which the center of perspectivity lies on the axis of perspectivity.
A Moufang plane is a projective plane in which the little Desargues theorem is valid for every line.
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice-versa.
In mathematics, affine geometry is what remains of Euclidean geometry when ignoring the metric notions of distance and angle.
In finite geometry, the Fano plane is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is PG(2, 2). Here PG stands for "projective geometry", the first parameter is the geometric dimension and the second parameter is the order.
In geometry, a striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this concept. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.
In projective geometry, Pascal's theorem states that if six arbitrary points are chosen on a conic and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon meet at three points which lie on a straight line, called the Pascal line of the hexagon. It is named after Blaise Pascal.
In mathematics, Pappus's hexagon theorem states that
In geometry, the Pappus configuration is a configuration of nine points and nine lines in the Euclidean plane, with three points per line and three lines through each point.
In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, some collineations are not homographies, but the fundamental theorem of projective geometry asserts that is not so in the case of real projective spaces of dimension at least two. Synonyms include projectivity, projective transformation, and projective collineation.
In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear. In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".
In projective geometry, an intersection theorem or incidence theorem is a statement concerning an incidence structure – consisting of points, lines, and possibly higher-dimensional objects and their incidences – together with a pair of objects A and B. The "theorem" states that, whenever a set of objects satisfies the incidences, then the objects A and B must also be incident. An intersection theorem is not necessarily true in all projective geometries; it is a property that some geometries satisfy but others don't.
In geometry, the Desargues configuration is a configuration of ten points and ten lines, with three points per line and three lines per point. It is named after Girard Desargues.
Ordered geometry is a form of geometry featuring the concept of intermediacy but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affine, Euclidean, absolute, and hyperbolic geometry.
In geometry, a Moufang plane, named for Ruth Moufang, is a type of projective plane, more specifically a special type of translation plane. A translation plane is a projective plane that has a translation line, that is, a line with the property that the group of automorphisms that fixes every point of the line acts transitively on the points of the plane not on the line. A translation plane is Moufang if every line of the plane is a translation line.
Two figures in a plane are perspective from a pointO, called the center of perspectivity if the lines joining corresponding points of the figures all meet at O. Dually, the figures are said to be perspective from a line if the points of intersection of corresponding lines all lie on one line. The proper setting for this concept is in projective geometry where there will be no special cases due to parallel lines since all lines meet. Although stated here for figures in a plane, the concept is easily extended to higher dimensions.
In mathematics, a non-Desarguesian plane is a projective plane that does not satisfy Desargues' theorem, or in other words a plane that is not a Desarguesian plane. The theorem of Desargues is true in all projective spaces of dimension not 2; in other words, the only projective spaces of dimension not equal to 2 are the classical projective geometries over a field. However, David Hilbert found that some projective planes do not satisfy it. The current state of knowledge of these examples is not complete.
In geometry and in its applications to drawing, a perspectivity is the formation of an image in a picture plane of a scene viewed from a fixed point.
In Euclidean geometry, trilinear polarity is a certain correspondence between the points in the plane of a triangle not lying on the sides of the triangle and lines in the plane of the triangle not passing through the vertices of the triangle. "Although it is called a polarity, it is not really a polarity at all, for poles of concurrent lines are not collinear points." It was Jean-Victor Poncelet (1788–1867), a French engineer and mathematician, who introduced the idea of the trilinear polar of a point in 1865.