A major contributor to this article appears to have a close connection with its subject.(September 2020) |
In geometry, a developable roller is a convex solid whose surface consists of a single continuous, developable face. [1] [2] While rolling on a plane, most developable rollers develop their entire surface so that all the points on the surface touch the rolling plane. All developable rollers have ruled surfaces. Four families of developable rollers have been described to date: the prime polysphericons, [3] the convex hulls of the two disc rollers (TDR convex hulls), [4] the polycons [5] [1] and the Platonicons. [2] [6]
Each developable roller family is based on a different construction principle. The prime polysphericons are a subfamily of the polysphericon family. [7] They are based on bodies made by rotating regular polygons around one of their longest diagonals. These bodies are cut in two at their symmetry plane and the two halves are reunited after being rotated at an offset angle relative to each other. [5] All prime polysphericons have two edges made of one or more circular arcs and four vertices. All of them, but the sphericon, have surfaces that consist of one kind of conic surface and one, or more, conical or cylindrical frustum surfaces. [1] Two-disc rollers are made of two congruent symmetrical circular or elliptical sectors. The sectors are joined to each other such that the planes in which they lie are perpendicular to each other, and their axes of symmetry coincide. [4] The convex hulls of these structures constitute the members of the TDR convex hull family. All members of this family have two edges (the two circular or elliptical arcs). They may have either 4 vertices, as in the sphericon (which is a member of this family as well) or none, as in the oloid. Like the prime polysphericons the polycons are based on regular polygons but consist of identical pieces of only one type of cone with no frustum parts. The cone is created by rotating two adjacent edges of a regular polygon (and in most cases their extensions as well) around the polygon's axis of symmetry that passes through their common vertex. A polycon based on an n-gon (a polygon with n edges) has n edges and n + 2 vertices. The sphericon, which is a member of this family as well, has circular edges. The hexacon's edges are parabolic. All other polycons' edges are hyperbolic. [1] Like the polycons, the Platonicons are made of only one type of conic surface. Their unique feature is that each one of them circumscribes one of the five Platonic solids. Unlike the other families, this family is not infinite. 14 Platonicons have been discovered to date. [2]
Unlike axially symmetrical bodies that, if unrestricted, can perform a linear rolling motion (like the sphere or the cylinder) or a circular one (like the cone), developable rollers meander while rolling. [1] Their motion is linear only on average. In the case of the polycons and Platonicons, as well as some of the prime polysphericons, the path of their center of mass consists of circular arcs. In the case of the prime polysphericons that have surfaces that contain cylindrical parts the path is a combination of circular arcs and straight lines. A general expression for the shape of the path of the TDR convex hulls center of mass has yet to be derived. [4] In order to maintain a smooth rolling motion the center of mass of a rolling body must maintain a constant height. All prime polysphericons, polycons, and platonicons and some of the TDR convex hulls share this property. [1] [3] Some of the TDR convex hulls, like the oloid, do not possess this property. In order for a TDR convex hull to maintain constant height the following must hold:
Where a and b are the half minor and major axes of the elliptic arcs, respectively, and c is the distance between their centers. [4] For example, in the case where the skeletal structure of the convex hull TDR consists of two circular segments with radius r, for the center of mass to be kept at constant height, the distance between the sectors' centers should be equal to r. [8]
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.
In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.
In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as ABCD.
In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.
In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.
In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.
In solid geometry, the sphericon is a solid that has a continuous developable surface with two congruent, semi-circular edges, and four vertices that define a square. It is a member of a special family of rollers that, while being rolled on a flat surface, bring all the points of their surface to contact with the surface they are rolling on. It was discovered independently by carpenter Colin Roberts in the UK in 1969, by dancer and sculptor Alan Boeding of MOMIX in 1979, and by inventor David Hirsch, who patented it in Israel in 1980.
In geometry, a curve of constant width is a simple closed curve in the plane whose width is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. Standard examples are the circle and the Reuleaux triangle. These curves can also be constructed using circular arcs centered at crossings of an arrangement of lines, as the involutes of certain curves, or by intersecting circles centered on a partial curve.
A Reuleaux triangle[ʁœlo] is a curved triangle with constant width, the simplest and best known curve of constant width other than the circle. It is formed from the intersection of three circular disks, each having its center on the boundary of the other two. Constant width means that the separation of every two parallel supporting lines is the same, independent of their orientation. Because its width is constant, the Reuleaux triangle is one answer to the question "Other than a circle, what shape can a manhole cover be made so that it cannot fall down through the hole?"
In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,4}. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. It is also called C16, hexadecachoron, or hexdecahedroid [sic?].
A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.
In geometry, a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with polygonal base. A pyramid with an n-sided base has n + 1 vertices, n + 1 faces, and 2n edges. All pyramids are self-dual.
In geometry, a polytope or a tiling is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other, while leaving the region occupied by the object unchanged.
An oloid is a three-dimensional curved geometric object that was discovered by Paul Schatz in 1929. It is the convex hull of a skeletal frame made by placing two linked congruent circles in perpendicular planes, so that the center of each circle lies on the edge of the other circle. The distance between the circle centers equals the radius of the circles. One third of each circle's perimeter lies inside the convex hull, so the same shape may be also formed as the convex hull of the two remaining circular arcs each spanning an angle of 4π/3.
In geometry, a polycon is a kind of a developable roller. It is made of identical pieces of a cone whose apex angle equals the angle of an even sided regular polygon. In principle, there are infinitely many polycons, as many as there are even sided regular polygons. Most members of the family have elongated spindle like shapes. The polycon family generalizes the sphericon. It was discovered by the Israeli inventor David Hirsch in 2017
In geometry, a Reinhardt polygon is an equilateral polygon inscribed in a Reuleaux polygon. As in the regular polygons, each vertex of a Reinhardt polygon participates in at least one defining pair of the diameter of the polygon. Reinhardt polygons with sides exist, often with multiple forms, whenever is not a power of two. Among all polygons with sides, the Reinhardt polygons have the largest possible perimeter for their diameter, the largest possible width for their diameter, and the largest possible width for their perimeter. They are named after Karl Reinhardt, who studied them in 1922.