Sphericon

Last updated
Sphericon animation Sphericon-ani.gif
Sphericon animation
STL model of a sphericon Sphericon.stl
STL model of a sphericon
Animation of a rolling sphericon Rolling sphericon.gif
Animation of a rolling sphericon

In solid geometry, the sphericon is a solid that has a continuous developable surface with two congruent, semi-circular edges, and four vertices that define a square. It is a member of a special family of rollers that, while being rolled on a flat surface, bring all the points of their surface to contact with the surface they are rolling on. It was discovered independently by carpenter Colin Roberts (who named it) in the UK in 1969, [1] by dancer and sculptor Alan Boeding of MOMIX in 1979, [2] and by inventor David Hirsch, who patented it in Israel in 1980. [3]

Contents

Construction

The sphericon may be constructed from a bicone (a double cone) with an apex angle of 90 degrees, by splitting the bicone along a plane through both apexes, rotating one of the two halves by 90 degrees, and reattaching the two halves. [4] Alternatively, the surface of a sphericon can be formed by cutting and gluing a paper template in the form of four circular sectors (with central angles ) joined edge-to-edge. [5]

Geometric properties

The surface area of a sphericon with radius is given by

.

The volume is given by

,

exactly half the volume of a sphere with the same radius.

History

Drawings of a two half-discs device for generating a meander motion, and of a sphericon, from David Hirsch's patent application A device for generating a meander motion.jpg
Drawings of a two half-discs device for generating a meander motion, and of a sphericon, from David Hirsch's patent application

Around 1969, Colin Roberts (a carpenter from the UK) made a sphericon out of wood while attempting to carve a Möbius strip without a hole. [1]

In 1979, David Hirsch invented a device for generating a meander motion. The device consisted of two perpendicular half discs joined at their axes of symmetry. While examining various configurations of this device, he discovered that the form created by joining the two half discs, exactly at their diameter centers, is actually a skeletal structure of a solid made of two half bicones, joined at their square cross-sections with an offset angle of 90 degrees, and that the two objects have exactly the same meander motion. Hirsch filed a patent in Israel in 1980, and a year later, a pull toy named Wiggler Duck, based on Hirsch's device, was introduced by Playskool Company.

In 1999, Colin Roberts sent Ian Stewart a package containing a letter and two sphericon models. In response, Stewart wrote an article "Cone with a Twist" in his Mathematical Recreations column of Scientific American. [1] This sparked quite a bit of interest in the shape, and has been used by Tony Phillips to develop theories about mazes. [6] Roberts' name for the shape, the sphericon, was taken by Hirsch as the name for his company, Sphericon Ltd. [7]

Comparison of an oloid (left) and sphericon (right) -- in the SVG image, move over the image to rotate the shapes Comparison oloid sphericon 3D.svg
Comparison of an oloid (left) and sphericon (right) in the SVG image, move over the image to rotate the shapes

In 1979, modern dancer Alan Boeding designed his "Circle Walker" sculpture from two crosswise semicircles, a skeletal version of the sphericon. He began dancing with a scaled-up version of the sculpture in 1980 as part of an MFA program in sculpture at Indiana University, and after he joined the MOMIX dance company in 1984 the piece became incorporated into the company's performances. [2] [8] The company's later piece "Dream Catcher" is based around a similar Boeding sculpture whose linked teardrop shapes incorporate the skeleton and rolling motion of the oloid, a similar rolling shape formed from two perpendicular circles each passing through the center of the other. [9]

In 2008, renowned British woodturner David Springett published the book "Woodturning Full Circle", which explains how sphericons (and other unusual solid forms, such as streptohedrons) can be made on a wood lathe. [10]

Related Research Articles

<span class="mw-page-title-main">Area</span> Size of a two-dimensional surface

Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve or the volume of a solid . Two different regions may have the same area ; by synecdoche, "area" sometimes is used to refer to the region, as in a "polygonal area".

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:

<span class="mw-page-title-main">Steradian</span> SI derived unit of solid angle

The steradian or square radian is the unit of solid angle in the International System of Units (SI). It is used in three dimensional geometry, and is analogous to the radian, which quantifies planar angles. Whereas an angle in radians, projected onto a circle, gives a length of a circular arc on the circumference, a solid angle in steradians, projected onto a sphere, gives the area of a spherical cap on the surface. The name is derived from the Greek στερεός stereos 'solid' + radian.

<span class="mw-page-title-main">Torus</span> Doughnut-shaped surface of revolution

In geometry, a torus is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut.

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

The Method of Mechanical Theorems, also referred to as The Method, is one of the major surviving works of the ancient Greek polymath Archimedes. The Method takes the form of a letter from Archimedes to Eratosthenes, the chief librarian at the Library of Alexandria, and contains the first attested explicit use of indivisibles. The work was originally thought to be lost, but in 1906 was rediscovered in the celebrated Archimedes Palimpsest. The palimpsest includes Archimedes' account of the "mechanical method", so called because it relies on the center of weights of figures (centroid) and the law of the lever, which were demonstrated by Archimedes in On the Equilibrium of Planes.

<span class="mw-page-title-main">Gabriel's horn</span> Geometric figure which has infinite surface area but finite volume

A Gabriel's horn is a type of geometric figure that has infinite surface area but finite volume. The name refers to the Christian tradition where the archangel Gabriel blows the horn to announce Judgment Day. The properties of this figure were first studied by Italian physicist and mathematician Evangelista Torricelli in the 17th century.

<span class="mw-page-title-main">Annulus (mathematics)</span> Region between two concentric circles

In mathematics, an annulus is the region between two concentric circles. Informally, it is shaped like a ring or a hardware washer. The word "annulus" is borrowed from the Latin word anulus or annulus meaning 'little ring'. The adjectival form is annular.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

<span class="mw-page-title-main">Cylinder</span> Three-dimensional solid

A cylinder has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base.

<span class="mw-page-title-main">Taylor cone</span> Shape formed in electrospraying

A Taylor cone refers to the cone observed in electrospinning, electrospraying and hydrodynamic spray processes from which a jet of charged particles emanates above a threshold voltage. Aside from electrospray ionization in mass spectrometry, the Taylor cone is important in field-emission electric propulsion (FEEP) and colloid thrusters used in fine control and high efficiency thrust of spacecraft.

<span class="mw-page-title-main">Circular arc</span> Part of a circle between two points

A circular arc is the arc of a circle between a pair of distinct points. If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians ; and the other arc, the major arc, subtends an angle greater than π radians. The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that connects the two ends of the arc is known as a chord of a circle. If the length of an arc is exactly half of the circle, it is known as a semicircular arc.

<span class="mw-page-title-main">Oloid</span> Three-dimensional curved geometric object

An oloid is a three-dimensional curved geometric object that was discovered by Paul Schatz in 1929. It is the convex hull of a skeletal frame made by placing two linked congruent circles in perpendicular planes, so that the center of each circle lies on the edge of the other circle. The distance between the circle centers equals the radius of the circles. One third of each circle's perimeter lies inside the convex hull, so the same shape may be also formed as the convex hull of the two remaining circular arcs each spanning an angle of 4π/3.

In geometry, a bicone or dicone is the three-dimensional surface of revolution of a rhombus around one of its axes of symmetry. Equivalently, a bicone is the surface created by joining two congruent, right, circular cones at their bases.

<span class="mw-page-title-main">Cavalieri's principle</span> Geometry concept

In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows:

Rolling cone motion is the rolling motion generated by a cone rolling over another cone. In rolling cone motion, at least one of the cones is convex, while the other cone may be either convex, or concave, or a flat surface. The distinguishing characteristic of a rolling cone, in relation to other axially symmetrical rollers, is that while rolling on a flat surface, the cone's center of gravity performs a circular motion rather than a linear one. Another unique characteristic is that one of its points is at rest throughout the entire motion.

<span class="mw-page-title-main">Developable roller</span> Convex solid with a continuous, developable surface

In geometry, a developable roller is a convex solid whose surface consists of a single continuous, developable face. While rolling on a plane, most developable rollers develop their entire surface so that all the points on the surface touch the rolling plane. All developable rollers have ruled surfaces. Four families of developable rollers have been described to date: the prime polysphericons, the convex hulls of the two disc rollers, the polycons and the Platonicons.

In geometry, a polycon is a kind of a developable roller. It is made of identical pieces of a cone whose apex angle equals the angle of an even sided regular polygon. In principle, there are infinitely many polycons, as many as there are even sided regular polygons. Most members of the family have elongated spindle like shapes. The polycon family generalizes the sphericon. It was discovered by the Israeli inventor David Hirsch in 2017

References

  1. 1 2 3 Stewart, Ian (October 1999). "Mathematical Recreations: Cone with a Twist". Scientific American. 281 (4): 116–117. JSTOR   26058451. Archived from the original on 2019-02-12.
  2. 1 2 Boeding, Alan (April 27, 1988), "Circle dancing", The Christian Science Monitor
  3. David Haran Hirsch (1980): "Patent no. 59720: A device for generating a meander motion; Patent drawings; Patent application form; Patent claims
  4. Paul J. Roberts (2010). "The Sphericon". Archived from the original on 2012-07-23.
  5. A mesh at www.pjroberts.com/sphericon, archived by web.archive.org
  6. Michele Emmer (2005). The Visual Mind II . MIT Press. pp.  667–685. ISBN   978-0-262-05076-0.
  7. ""Sphericon Ltd. - Israel-Export" (pdf)" (PDF).
  8. Green, Judith (May 2, 1991), "hits and misses at Momix: it's not quite dance, but it's sometimes art", Dance review, San Jose Mercury News
  9. Anderson, Jack (February 8, 2001), "Leaping Lizards and Odd Denizens of the Desert", Dance Review, The New York Times
  10. Springett, David, Woodturning Full Circle