Dichlormid

Last updated
Dichlormid
Dichloramid.svg
Names
Other names
N,N-diallyl-2,2-dichloroacetamide
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.048.763 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 253-658-8
KEGG
PubChem CID
UNII
  • InChI=1S/C8H11Cl2NO/c1-3-5-11(6-4-2)8(12)7(9)10/h3-4,7H,1-2,5-6H2
    Key: YRMLFORXOOIJDR-UHFFFAOYSA-N
  • O=C(N(CC=C)CC=C)C(Cl)Cl
Properties
C8H11Cl2NO
Molar mass 208.08 g·mol−1
Appearancecolorless oil
Melting point 5.5 °C (41.9 °F; 278.6 K)
Hazards
GHS labelling: [1]
GHS-pictogram-exclam.svg
Warning
H302, H315, H332
P261, P264, P270, P271, P280, P301+P317, P302+P352, P304+P340, P317, P321, P330, P332+P317, P362+P364, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dichlormid is an organic compound with the formula Cl2CHCON(CH2C=CH2)2. The compound can be classified as the amide of diallylamine and dichloroacetic acid. It is an herbicide safener for use with maize. [2]

It can be synthesized by reacting diallylamine with dichloroacetyl chloride. [3]

Related Research Articles

<span class="mw-page-title-main">Herbicide</span> Type of chemical used to kill unwanted plants

Herbicides, also commonly known as weed killers, are substances used to control undesired plants, also known as weeds. Selective herbicides control specific weed species while leaving the desired crop relatively unharmed, while non-selective herbicides kill plants indiscriminately. The combined effects of herbicides, nitrogen fertilizer, and improved cultivars has increased yields of major crops by three to six times from 1900 to 2000.

<span class="mw-page-title-main">MCPA</span> Organic compound used as an herbicide

MCPA is a widely used phenoxy herbicide introduced in 1945. It selectively controls broad-leaf weeds in pasture and cereal crops. The mode of action of MCPA is as an auxin, which are growth hormones that naturally exist in plants.

<span class="mw-page-title-main">Hexazinone</span> Chemical compound

Hexazinone is an organic compound that is used as a broad spectrum herbicide. It is a colorless solid. It exhibits some solubility in water but is highly soluble in most organic solvents except alkanes. A member of the triazine class herbicides, it is manufactured by DuPont and sold under the trade name Velpar.

<span class="mw-page-title-main">Phenoxy herbicide</span> Class of herbicide

Phenoxy herbicides are two families of chemicals that have been developed as commercially important herbicides, widely used in agriculture. They share the part structure of phenoxyacetic acid.

<span class="mw-page-title-main">Sulfur assimilation</span> Incorporation of sulfur into living organisms

Sulfur assimilation is the process by which living organisms incorporate sulfur into their biological molecules. In plants, sulfate is absorbed by the roots and then transported to the chloroplasts by the transipration stream where the sulfur are reduced to sulfide with the help of a series of enzymatic reactions. Furthermore, the reduced sulfur is incorporated into cysteine, an amino acid that is a precursor to many other sulfur-containing compounds. In animals, sulfur assimilation occurs primarily through the diet, as animals cannot produce sulfur-containing compounds directly. Sulfur is incorporated into amino acids such as cysteine and methionine, which are used to build proteins and other important molecules.

<span class="mw-page-title-main">Fenoprop</span> Chemical compound

Fenoprop, also called 2,4,5-TP, is the organic compound 2-(2,4,5-trichlorophenoxy)propionic acid. It is a phenoxy herbicide and a plant growth regulator, an analog of 2,4,5-T in which the latter's acetic acid sidechain is replaced with a propionate group (with an extra CH3). The addition of this extra methyl group creates a chiral centre in the molecule and useful biological activity is found only in the (2R)-isomer. The compound's mechanism of action is to mimic the auxin growth hormone indoleacetic acid (IAA). When sprayed on plants it induces rapid, uncontrolled growth. As with 2,4,5-T, fenoprop is toxic to shrubs and trees.

<span class="mw-page-title-main">Sulfentrazone</span> Chemical compound

Sulfentrazone is the ISO common name for an organic compound used as a broad-spectrum herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase. It was first marketed in the US in 1997 by FMC Corporation with the brand name Authority.

This is an index of articles relating to pesticides.

<span class="mw-page-title-main">Leptospermone</span> Chemical compound

Leptospermone is a chemical compound produced by some members of the myrtle family (Myrtaceae), such as Callistemon citrinus, a shrub native to Australia, and Leptospermum scoparium (Manuka), a New Zealand tree from which it gets its name. Modification of this allelopathic chemical to produce mesotrione led to the commercialization of derivative compounds as HPPD inhibitor herbicides.

<span class="mw-page-title-main">Mesotrione</span> Chemical compound used as an herbicide

Mesotrione is a selective herbicide used mainly in maize crops. It is a synthetic compound inspired by the natural substance leptospermone found in the bottlebrush tree Callistemon citrinus. It inhibits the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) and is sold under brand names including Callisto and Tenacity. It was first marketed by Syngenta in 2001.

<span class="mw-page-title-main">2,4-Dichlorophenoxyacetic acid</span> Herbicide

2,4-Dichlorophenoxyacetic acid is an organic compound with the chemical formula Cl2C6H3OCH2CO2H. It is usually referred to by its ISO common name 2,4-D. It is a systemic herbicide that kills most broadleaf weeds by causing uncontrolled growth, but most grasses such as cereals, lawn turf, and grassland are relatively unaffected.

<span class="mw-page-title-main">Acifluorfen</span> Chemical compound

Acifluorfen is the ISO common name for an organic compound used as an herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase which is necessary for chlorophyll synthesis. Soybeans naturally have a high tolerance to acifluorfen and its salts, via metabolic disposal by glutathione S-transferase. It is effective against broadleaf weeds and grasses and is used agriculturally on fields growing soybeans, peanuts, peas, and rice.

4-Hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are a class of herbicides that prevent growth in plants by blocking 4-Hydroxyphenylpyruvate dioxygenase, an enzyme in plants that breaks down the amino acid tyrosine into molecules that are then used by plants to create other molecules that plants need. This process of breakdown, or catabolism, and making new molecules from the results, or biosynthesis, is something all living things do. HPPD inhibitors were first brought to market in 1980, although their mechanism of action was not understood until the late 1990s. They were originally used primarily in Japan in rice production, but since the late 1990s have been used in Europe and North America for corn, soybeans, and cereals, and since the 2000s have become more important as weeds have become resistant to glyphosate and other herbicides. Genetically modified crops are under development that include resistance to HPPD inhibitors. There is a pharmaceutical drug on the market, nitisinone, that was originally under development as an herbicide as a member of this class and is used to treat an orphan disease, type I tyrosinemia.

<span class="mw-page-title-main">Bifenox</span> Chemical compound used as an herbicide

Bifenox is the ISO common name for an organic compound used as an herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase which is necessary for chlorophyll synthesis.

<span class="mw-page-title-main">Dichloroacetyl chloride</span> Chemical compound

Dichloroacetyl chloride is the organic compound with the formula CHCl2COCl. It is the acyl chloride of dichloroacetic acid. It is a colourless liquid and is used in acylation reactions.

<span class="mw-page-title-main">Fomesafen</span> PPOi herbicide

Fomesafen is the ISO common name for an organic compound used as an herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase (PPO) which is necessary for chlorophyll synthesis. Soybeans naturally have a high tolerance to fomesafen, via metabolic disposal by glutathione S-transferase. As a result, soy is the most common crop treated with fomesafen, followed by other beans and a few other crop types. It is not safe for maize/corn or other Poaceae.

<span class="mw-page-title-main">Fluazifop</span> ACCase herbicide, fop, anti-grass

Fluazifop is the common name used by the ISO for an organic compound that is used as a selective herbicide. The active ingredient is the 2R enantiomer at its chiral centre and this material is known as fluazifop-P when used in that form. More commonly, it is sold as its butyl ester, fluazifop-P butyl with the brand name Fusilade.

<span class="mw-page-title-main">Chlorsulfuron</span> ALS inhibitor herbicide

Chlorsulfuron is an ALS inhibitor herbicide, and is a sulfonylurea compound. It was discovered by George Levitt in February 1976 while working at DuPont, which was the patent assignee.

Diallylamine is the organic compound with the formula HN(CH2CH=CH2)2. It is a colorless liquid with an ammonia-like odor. It is multifunctional, featuring a secondary amine and two alkene groups. Diallylamine is used in the production of N,N-diallyldichloroacetamide (dichlormid) and N,N-diallyldimethylammonium chloride.

<span class="mw-page-title-main">Isoxaflutole</span> Chemical compound

Isoxaflutole is a selective herbicide used mainly in maize crops. It inhibits the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) and is sold under brand names including Balance and Merlin. It was first marketed by Rhône-Poulenc in 1996.

References

  1. "Dichlormid". pubchem.ncbi.nlm.nih.gov.
  2. Riechers, Dean E.; Kreuz, Klaus; Zhang, Qin (2010). "Detoxification without Intoxication: Herbicide Safeners Activate Plant Defense Gene Expression". Plant Physiology. 153 (1): 3–13. doi:10.1104/pp.110.153601. PMC   2862420 . PMID   20237021.
  3. Unger, T.A. (1996). Pesticide Synthesis Handbook. William Andrew. p. 17. ISBN   978-0-8155-1853-2 . Retrieved 2024-11-22.