Dimictic lake

Last updated

A dimictic lake is a body of freshwater whose difference in temperature between surface and bottom layers becomes negligible twice per year, allowing all strata of the lake's water to circulate vertically. All dimictic lakes are also considered holomictic, a category which includes all lakes which mix one or more times per year. During winter, dimictic lakes are covered by a layer of ice, creating a cold layer at the surface, a slightly warmer layer beneath the ice, and a still-warmer unfrozen bottom layer, while during summer, the same temperature-derived density differences separate the warm surface waters (the epilimnion), from the colder bottom waters (the hypolimnion). In the spring and fall, these temperature differences briefly disappear, and the body of water overturns and circulates from top to bottom. Such lakes are common in mid-latitude regions with temperate climates. [1]

Contents

Examples of dimictic lakes

Seasonal cycles of mixing and stratification

There is a seasonal cycle of thermal stratification with two periods of mixing in spring and fall. Such lakes are termed "dimictic'. During summer there is a strong thermal stratification, while there is a weaker inverse stratification in winter. (Figure modified from ) Dimictic lake.png
There is a seasonal cycle of thermal stratification with two periods of mixing in spring and fall. Such lakes are termed "dimictic'. During summer there is a strong thermal stratification, while there is a weaker inverse stratification in winter. (Figure modified from )

Mixing (overturning) typically occurs during the spring and autumn, when the lake is "isothermal" (i.e. at the same temperature from the top to the bottom). At this time, the water throughout the lake is near 4 °C (the temperature of maximum density), and, in the absence of any temperature or density differences, the lake readily mixes from top to bottom. During winter any additional cooling below 4 °C results in stratification of water column, so dimictic lakes usually have an inverse thermal stratification, with water at 0 °C below ice and then with temperatures increasing to near 4 °C at the lake's base. [3]

Spring overturn

Once the ice melts, the water column can be mixed by the wind. In large lakes the upper water column is often below 4 °C when the ice melts, so that spring is characterized by continued mixing by solar driven convection, [4] [5] until the water column reaches 4 °C. In small lakes, the period of spring overturn can be very brief, [6] so that spring overturn is often much shorter than the fall overturn. As the upper water column warms past 4 °C a thermal stratification starts to develop.

Summer stratification

During summer, the heat fluxes from the atmosphere to a lake warms the surface layers. This results in dimictic lakes have a strong thermal stratification, with a warm epilimnion separated from the cold hypolimnion by the metalimnion. Within the metalimnion there is a thermocline, usually defined as the region where temperature gradients exceed 1 °C/m. [7] Due to the stable density gradient, mixing is inhibited within the thermocline, [8] which reduces the vertical transport of dissolved oxygen. If a lake is eutrophic and has a high sediment oxygen demand, the hypolimnion in dimictic lakes can become hypoxic during summer stratification, as often seen in Lake Erie.

During summer stratification, most lakes are observed to experience internal waves due to energy input from winds. If the lake is small (less than 5 km in length), then the period of the internal seiche is well predicted by the Merian formulae. [9] Long period internal waves in larger lakes can be influenced by Coriolis forces (due to the Earth's rotation). This is expected to occur when the period of internal seiche becomes comparable to the local inertial period, which is 16.971 hours at a latitude of 45 °N (link to Coriolis utility). In large lakes (such a Lake Simcoe, Lake Geneva, Lake Michigan or Lake Ontario) the observed frequencies of internal seiches are dominated by Poincaré waves [10] [11] and Kelvin waves. [12] [13]

Fall overturn

In late summer, air temperatures drop and the surface of lakes cool, resulting in a deeper mixed layer, until at some point the water column becomes isothermal, and generally high in dissolved oxygen. During fall a combination of wind and cooling air temperatures continue to keep the water column mixed. The water continues to cool until the temperature reaches 4 °C. Often fall overturn can last for 3–4 months.

Winter inverse stratification

After the water column reaches the temperature of maximum density at 4°C, any subsequent cooling produces less dense water due to non-linearity of equation of state of water. Early winter is thus a period of restratification. [14] If there is relatively little wind, or the lake is deep, only a thin layer of buoyant cold water forms above denser 4°C waters and the lake will be "cryostratified" once ice forms. [15] If the lake experiences strong winds or is shallow, then the whole water column can cool to near 0°C before ice forms, these colder lakes are termed "cryomictic". [15] Once ice forms on a lake, the heat fluxes from the atmosphere are largely shut down and the initial cyrostratified or cryomictic conditions are largely locked in. The development of thermal stratification during winter is then defined by two periods: Winter I and Winter II. [16] During the early winter period of Winter I the major heat flux is due to heat stored in sediment; during this period the lake heats up from beneath forming a deep layer of 4 °C water. [16] During late winter, the surface ice starts to melt and with the increased length of the day, there is increased sunlight that penetrates through the ice into the upper water column. Thus during Winter II, the major heat flux is now from above, and the warming causes an unstable layer to form, resulting in solar driven convection. [5] [17] [3] This mixing of the upper water column is important for keeping plankton in suspension, [18] [3] [19] which in turn influences the timing of under-ice algal blooms and levels of dissolved oxygen. [20] [3] Coriolis forces can also become important in driving circulation patterns due to differential heating by solar radiation. [21] The winter period of lakes is probably the least studied, [22] but the chemistry and biology are still very active under the ice. [23]

See also

Related Research Articles

<span class="mw-page-title-main">Limnology</span> Science of inland aquatic ecosystems

Limnology is the study of inland aquatic ecosystems. The study of limnology includes aspects of the biological, chemical, physical, and geological characteristics of fresh and saline, natural and man-made bodies of water. This includes the study of lakes, reservoirs, ponds, rivers, springs, streams, wetlands, and groundwater. Water systems are often categorized as either running (lotic) or standing (lentic).

<span class="mw-page-title-main">Hypolimnion</span> Bottom layer of water in a thermally-stratified lake

The hypolimnion or under lake is the dense, bottom layer of water in a thermally-stratified lake. The word "hypolimnion" is derived from Ancient Greek: λιμνίον, romanized: limníon, lit. 'lake'. It is the layer that lies below the thermocline.

<span class="mw-page-title-main">Epilimnion</span> Top layer of water in a thermally-stratified lake

The epilimnion or surface layer is the top-most layer in a thermally stratified lake.

<span class="mw-page-title-main">Thermocline</span> Thermal layer in a body of water

A thermocline is a distinct layer based on temperature within a large body of fluid with a high gradient of distinct temperature differences associated with depth. In the ocean, the thermocline divides the upper mixed layer from the calm deep water below.

<span class="mw-page-title-main">Meromictic lake</span> Permanently stratified lake with layers of water that do not intermix

A meromictic lake is a lake which has layers of water that do not intermix. In ordinary, holomictic lakes, at least once each year, there is a physical mixing of the surface and the deep waters.

<span class="mw-page-title-main">Lake stratification</span> Separation of water in a lake into distinct layers

Lake stratification is the tendency of lakes to form separate and distinct thermal layers during warm weather. Typically stratified lakes show three distinct layers: the epilimnion, comprising the top warm layer; the thermocline, the middle layer, whose depth may change throughout the day; and the colder hypolimnion, extending to the floor of the lake.

Ocean stratification is the natural separation of an ocean's water into horizontal layers by density, which is generally stable because warm water floats on top of cold water, and heating is mostly from the sun, which reinforces that arrangement. Stratification is reduced by wind-forced mechanical mixing, but reinforced by convection. Stratification occurs in all ocean basins and also in other water bodies. Stratified layers are a barrier to the mixing of water, which impacts the exchange of heat, carbon, oxygen and other nutrients. The surface mixed layer is the uppermost layer in the ocean and is well mixed by mechanical (wind) and thermal (convection) effects. Climate change is causing the upper ocean stratification to increase.

<span class="mw-page-title-main">Mixed layer</span> Layer in which active turbulence has homogenized some range of depths

The oceanic or limnological mixed layer is a layer in which active turbulence has homogenized some range of depths. The surface mixed layer is a layer where this turbulence is generated by winds, surface heat fluxes, or processes such as evaporation or sea ice formation which result in an increase in salinity. The atmospheric mixed layer is a zone having nearly constant potential temperature and specific humidity with height. The depth of the atmospheric mixed layer is known as the mixing height. Turbulence typically plays a role in the formation of fluid mixed layers.

Monomictic lakes are holomictic lakes that mix from top to bottom during one mixing period each year. Monomictic lakes may be subdivided into cold and warm types.

Amictic lakes are "perennially sealed off by ice, from most of the annual seasonal variations in temperature." Amictic lakes exhibit inverse cold water stratification whereby water temperature increases with depth below the ice surface 0 °C (less-dense) up to a theoretical maximum of 4 °C.

Polymictic lakes are holomictic lakes that are too shallow to develop thermal stratification; thus, their waters can mix from top to bottom throughout the ice-free period. Polymictic lakes can be divided into cold polymictic lakes, and warm polymictic lakes. While such lakes are well-mixed on average, during low-wind periods, weak and ephemeral stratification can often develop.

The deep chlorophyll maximum (DCM), also called the subsurface chlorophyll maximum, is the region below the surface of water with the maximum concentration of chlorophyll. The DCM generally exists at the same depth as the nutricline, the region of the ocean where the greatest change in the nutrient concentration occurs with depth.

<span class="mw-page-title-main">Double diffusive convection</span> Convection with two density gradients

Double diffusive convection is a fluid dynamics phenomenon that describes a form of convection driven by two different density gradients, which have different rates of diffusion.

<span class="mw-page-title-main">Lake metabolism</span> The balance between production and consumption of organic matter in lakes

Lake metabolism represents a lake's balance between carbon fixation and biological carbon oxidation. Whole-lake metabolism includes the carbon fixation and oxidation from all organism within the lake, from bacteria to fishes, and is typically estimated by measuring changes in dissolved oxygen or carbon dioxide throughout the day.

<span class="mw-page-title-main">Stratification (water)</span> Layering of a body of water due to density variations

Stratification in water is the formation in a body of water of relatively distinct and stable layers by density. It occurs in all water bodies where there is stable density variation with depth. Stratification is a barrier to the vertical mixing of water, which affects the exchange of heat, carbon, oxygen and nutrients. Wind-driven upwelling and downwelling of open water can induce mixing of different layers through the stratification, and force the rise of denser cold, nutrient-rich, or saline water and the sinking of lighter warm or fresher water, respectively. Layers are based on water density: denser water remains below less dense water in stable stratification in the absence of forced mixing.

Open ocean convection is a process in which the mesoscale ocean circulation and large, strong winds mix layers of water at different depths. Fresher water lying over the saltier or warmer over the colder leads to the stratification of water, or its separation into layers. Strong winds cause evaporation, so the ocean surface cools, weakening the stratification. As a result, the surface waters are overturned and sink while the "warmer" waters rise to the surface, starting the process of convection. This process has a crucial role in the formation of both bottom and intermediate water and in the large-scale thermohaline circulation, which largely determines global climate. It is also an important phenomena that controls the intensity of the Atlantic Meridional Overturning Circulation (AMOC).

Thermohaline staircases are patterns that form in oceans and other bodies of salt water, characterised by step-like structures observed in vertical temperature and salinity profiles; the patterns are formed and maintained by double diffusion of heat and salt. The ocean phenomenon consists of well-mixed layers of ocean water stacked on top of each other. The well-mixed layers are separated by high-gradient interfaces, which can be several meters thick. The total thickness of staircases ranges typically from tens to hundreds of meters.

<span class="mw-page-title-main">Lake Lacawac</span>

Lake Lacawac is located at the very middle of Lacawac's Sanctuary Field Station in Pennsylvania and has been deemed the "southernmost unpolluted glacial lake in North America." Lake Lacawac has proven to be invaluable to researchers and students to conduct field experiments in order to learn more about the limnology of the lake.

Mary-Louise Elizabeth Timmermans is a marine scientist known for her work on the Arctic Ocean. She is the Damon Wells Professor of Earth and Planetary Sciences at Yale University.

<span class="mw-page-title-main">Alpine lake</span> High-altitude lake in a mountainous zone

An alpine lake is a high-altitude lake in a mountainous area, usually near or above the tree line, with extended periods of ice cover. These lakes are commonly glacial lakes formed from glacial activity but can also be formed from geological processes such as volcanic activity or landslides. Many alpine lakes that are fed from glacial meltwater have the characteristic bright turquoise green color as a result of glacial flour, suspended minerals derived from a glacier scouring the bedrock. When active glaciers are not supplying water to the lake, such as a majority of Rocky Mountains alpine lakes in the United States, the lakes may still be bright blue due to the lack of algal growth resulting from cold temperatures, lack of nutrient run-off from surrounding land, and lack of sediment input. The coloration and mountain locations of alpine lakes attract lots of recreational activity.

References

  1. Lewis, William M. Jr. (1983). "A revised classification of lakes based on mixing" (PDF). Canadian Journal of Fisheries and Aquatic Sciences. 40 (10): 1779–1787. doi:10.1139/f83-207. Archived from the original (PDF) on 2009-03-06.
  2. Wells, M. G., & Troy, C. D. (2022). Surface Mixed Layers in Lakes. In Encyclopedia of Inland Waters (pp. 546–561). Elsevier. https://doi.org/10.1016/B978-0-12-819166-8.00126-2
  3. 1 2 3 4 Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew (2017-12-23). "High-Frequency Observations of Temperature and Dissolved Oxygen Reveal Under-Ice Convection in a Large Lake". Geophysical Research Letters. 44 (24): 12, 218–12, 226. Bibcode:2017GeoRL..4412218Y. doi: 10.1002/2017GL075373 . ISSN   0094-8276.
  4. Cannon, D. J.; Troy, C. D.; Liao, Q.; Bootsma, H. A. (2019-06-28). "Ice‐Free Radiative Convection Drives Spring Mixing in a Large Lake". Geophysical Research Letters. 46 (12): 6811–6820. Bibcode:2019GeoRL..46.6811C. doi:10.1029/2019gl082916. ISSN   0094-8276. S2CID   197574599.
  5. 1 2 Austin, Jay A. (2019-04-22). "Observations of radiatively driven convection in a deep lake". Limnology and Oceanography. 64 (5): 2152–2160. Bibcode:2019LimOc..64.2152A. doi: 10.1002/lno.11175 . ISSN   0024-3590.
  6. Pierson, D.C.; Weyhenmeyer, G. A.; Arvola, L.; Benson, B.; Blenckner, T.; Kratz, T.; Livingstone, D.M.; Markensten, H.; Marzec, G.; Pettersson, K.; Weathers, K. (February 2011). "An automated method to monitor lake ice phenology". Limnology and Oceanography: Methods. 9 (2): 74–83. doi: 10.4319/lom.2010.9.0074 . ISSN   1541-5856.
  7. Gorham, Eville; Boyce, Farrell M. (January 1989). "Influence of Lake Surface Area and Depth Upon Thermal Stratification and the Depth of the Summer Thermocline". Journal of Great Lakes Research. 15 (2): 233–245. Bibcode:1989JGLR...15..233G. doi:10.1016/s0380-1330(89)71479-9. ISSN   0380-1330. S2CID   128748369.
  8. Chowdhury, Mijanur R.; Wells, Mathew G.; Cossu, Remo (December 2015). "Observations and environmental implications of variability in the vertical turbulent mixing in Lake Simcoe". Journal of Great Lakes Research. 41 (4): 995–1009. Bibcode:2015JGLR...41..995C. doi:10.1016/j.jglr.2015.07.008. hdl: 1807/107899 . ISSN   0380-1330.
  9. Mortimer, C. H. (January 1974). "Lake hydrodynamics". SIL Communications, 1953-1996. 20 (1): 124–197. doi:10.1080/05384680.1974.11923886. ISSN   0538-4680.
  10. Choi, Jun; Troy, Cary D.; Hsieh, Tsung-Chan; Hawley, Nathan; McCormick, Michael J. (July 2012). "A year of internal Poincaré waves in southern Lake Michigan". Journal of Geophysical Research: Oceans. 117 (C7): n/a. Bibcode:2012JGRC..117.7014C. doi:10.1029/2012jc007984. hdl: 2027.42/95363 . ISSN   0148-0227.
  11. Chowdhury, Mijanur R.; Wells, Mathew G.; Howell, Todd (April 2016). "Movements of the thermocline lead to high variability in benthic mixing in the nearshore of a large lake". Water Resources Research. 52 (4): 3019–3039. Bibcode:2016WRR....52.3019C. doi:10.1002/2015wr017725. ISSN   0043-1397. S2CID   130510367.
  12. Flood, Bryan; Wells, Mathew; Dunlop, Erin; Young, Joelle (2019-08-14). "Internal waves pump waters in and out of a deep coastal embayment of a large lake". Limnology and Oceanography. 65 (2): 205–223. doi: 10.1002/lno.11292 . ISSN   0024-3590.
  13. Bouffard, Damien; Lemmin, Ulrich (December 2013). "Kelvin waves in Lake Geneva". Journal of Great Lakes Research. 39 (4): 637–645. Bibcode:2013JGLR...39..637B. doi:10.1016/j.jglr.2013.09.005. ISSN   0380-1330.
  14. Farmer, David M.; Carmack, Eddy (November 1981). "Wind Mixing and Restratification in a Lake near the Temperature of Maximum Density". Journal of Physical Oceanography. 11 (11): 1516–1533. Bibcode:1981JPO....11.1516F. doi: 10.1175/1520-0485(1981)011<1516:wmaria>2.0.co;2 . ISSN   0022-3670.
  15. 1 2 Yang, Bernard; Wells, Mathew G.; McMeans, Bailey C.; Dugan, Hilary A.; Rusak, James A.; Weyhenmeyer, Gesa A.; Brentrup, Jennifer A.; Hrycik, Allison R.; Laas, Alo; Pilla, Rachel M.; Austin, Jay A. (2021). "A New Thermal Categorization of Ice-Covered Lakes". Geophysical Research Letters. 48 (3): e2020GL091374. Bibcode:2021GeoRL..4891374Y. doi:10.1029/2020GL091374. ISSN   1944-8007. S2CID   233921281.
  16. 1 2 Kirillin, Georgiy; Leppäranta, Matti; Terzhevik, Arkady; Granin, Nikolai; Bernhardt, Juliane; Engelhardt, Christof; Efremova, Tatyana; Golosov, Sergey; Palshin, Nikolai; Sherstyankin, Pavel; Zdorovennova, Galina (October 2012). "Physics of seasonally ice-covered lakes: a review". Aquatic Sciences. 74 (4): 659–682. doi:10.1007/s00027-012-0279-y. ISSN   1015-1621. S2CID   6722239.
  17. Bouffard, Damien; Wüest, Alfred (2019-01-05). "Convection in Lakes" (PDF). Annual Review of Fluid Mechanics. 51 (1): 189–215. Bibcode:2019AnRFM..51..189B. doi:10.1146/annurev-fluid-010518-040506. ISSN   0066-4189. S2CID   125132769.
  18. Kelley, Dan E. (1997). "Convection in ice-covered lakes: effects on algal suspension". Journal of Plankton Research. 19 (12): 1859–1880. doi: 10.1093/plankt/19.12.1859 . ISSN   0142-7873.
  19. Bouffard, Damien; Zdorovennova, Galina; Bogdanov, Sergey; Efremova, Tatyana; Lavanchy, Sébastien; Palshin, Nikolay; Terzhevik, Arkady; Vinnå, Love Råman; Volkov, Sergey; Wüest, Alfred; Zdorovennov, Roman (2019-02-19). "Under-ice convection dynamics in a boreal lake". Inland Waters. 9 (2): 142–161. doi: 10.1080/20442041.2018.1533356 . ISSN   2044-2041.
  20. Yang, Bernard; Wells, Mathew G.; Li, Jingzhi; Young, Joelle (2020). "Mixing, stratification, and plankton under lake-ice during winter in a large lake: Implications for spring dissolved oxygen levels". Limnology and Oceanography. 65 (11): 2713–2729. Bibcode:2020LimOc..65.2713Y. doi:10.1002/lno.11543. ISSN   1939-5590. S2CID   225490164.
  21. Ramón, Cintia L.; Ulloa, Hugo N.; Doda, Tomy; Winters, Kraig B.; Bouffard, Damien (2021-04-07). "Bathymetry and latitude modify lake warming under ice". Hydrology and Earth System Sciences. 25 (4): 1813–1825. Bibcode:2021HESS...25.1813R. doi: 10.5194/hess-25-1813-2021 . ISSN   1027-5606.
  22. Ozersky, Ted; Bramburger, Andrew J.; Elgin, Ashley K.; Vanderploeg, Henry A.; Wang, Jia; Austin, Jay A.; Carrick, Hunter J.; Chavarie, Louise; Depew, David C.; Fisk, Aaron T.; Hampton, Stephanie E. (2021). "The Changing Face of Winter: Lessons and Questions from the Laurentian Great Lakes". Journal of Geophysical Research: Biogeosciences. 126 (6): e2021JG006247. Bibcode:2021JGRG..12606247O. doi: 10.1029/2021JG006247 . hdl: 2027.42/168250 . ISSN   2169-8961.
  23. Hampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H. (2017). "Ecology under lake ice". Ecology Letters. 20 (1): 98–111. doi:10.1111/ele.12699. hdl: 10919/94398 . ISSN   1461-0248. PMID   27889953.