Dokdonia donghaensis

Last updated

Dokdonia donghaensis
Scientific classification
Domain:
Phylum:
Order:
Suborder:
Family:
Genus:
Species:
D. donghaensis
Binomial name
Dokdonia donghaensis
Yoon et al. 2005 [1] [2]

Dokdonia donghaensis is a strictly aerobic, gram-negative, phototrophic bacterium that thrives in marine environments. The organism can grow at a broad range of temperatures on seawater media. It has the ability to form biofilms, which increases the organism's resistance to antimicrobial agents, such as tetracycline.

Contents

Discovery and isolation

Dokdonia donghaensis was discovered and isolated from the Sea of Japan in Korea from an island called Dokdo, [3] a Korean name for the Liancourt Rocks which sovereignty is disputed between Japan and Korea; the date of isolation is not specified. Phylogenetic analysis of the 16S ribosomal RNA gene sequence of the organism revealed two closely related strains, DSW-1T and DSW-21. These strains are classified in Cytophaga-Flavobacterium-Bacteroides (CFB) group, which are dominant genera in marine environments. [4] [5] Winogradsky first described Cytophaga-like bacteria as unicellular, gliding, non-spore-formers, and Gram-negative rods, although the shape varies. Many Cytophaga-like bacterial colonies have pigment due to flexirubin-type pigments that are only found in these bacteria and flavobacteria. Cytophaga–Flavobacteria are chemoorganotrophs and are able to degrade biopolymers like chitin and cellulose. [6]

Morphology and genome

D. donghaensis is a gram-negative bacterium that is rod-shaped, nonmotile, and a non-spore-former. The bacteria are able to grow on seawater media with agar, in which the colonies appear circular, slightly convex, glistening, smooth, yellow, and 1–2 mm in diameter. The DSW-1T strain of D. donghaensis has about 3,923,666 base pairs in its genome. [7] The DNA G+C content for D. donghaensis is 38%.

Image of the phylogenetic tree can be viewed here.

Pathology

D. donghaensis has not been identified as a human pathogen.[ citation needed ]

Metabolism

D. donghaensis performs light-driven sodium ion transport. This light-driven proton pump is called a proteorhodopsin, which increases the organism's survival rate because it can convert light into energy that the organism needs to grow. [8] Since the organism uses light for energy, it is a phototroph. D. donghaensis is able to secrete enzymes such as catalase and oxidase. [9] Since the organism is a strict aerobe, it used oxygen as a terminal electron acceptor. The organism can grow on peptone and tryptone as the sole carbon and nitrogen sources. D. donghaensis cannot grow in the absence of NaCl or when it is greater than 7% (w/v); growth is optimal at 2% (w/v) NaCl. The organism is susceptible to the antibiotics tetracycline and carbenicillin, [10] although the organism's ability to form biofilms makes it difficult for antibiotics to penetrate the viscous layers.

Habitat

D. donghaensis lives in halophilic marine environments. The organism can grow as low as 4 °C and as high as 35 °C, although the optimum temperature for growth is 30 °C. The optimal pH for growth is 7–8, although growth can be observed at a pH as low as 5.5. [11]

Biofilm formation

D. donghaensis is able to form biofilms in marine habitats, which is a survival strategy that allows the organism to grow while being protected from environmental stresses. Biofilm formation serves a purpose for marine bacteria in that it increases their resistance to antimicrobial agents, desiccation, and grazing. [12] [13] [14] [15] Biofilms allow the microbes to attach to surfaces by excreting extracellular polymeric substances (EPS). Marine bacteria that adhere to surfaces form host-specific and spatially structured communities that are fairly stable. [16] [17] [18]

Related Research Articles

<span class="mw-page-title-main">Biofilm</span> Aggregation of bacteria or cells on a surface

A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPSs). The cells within the biofilm produce the EPS components, which are typically a polymeric conglomeration of extracellular polysaccharides, proteins, lipids and DNA. Because they have three-dimensional structure and represent a community lifestyle for microorganisms, they have been metaphorically described as "cities for microbes".

<span class="mw-page-title-main">Anammox</span> Anaerobic ammonium oxidation, a microbial process of the nitrogen cycle

Anammox, an abbreviation for "anaerobic ammonium oxidation", is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. In the anammox reaction, nitrite and ammonium ions are converted directly into diatomic nitrogen and water.

Pseudomonas frederiksbergensis is a Gram-negative, phenanthrene-degrading bacterium from a coal gasification site in Frederiksberg, Copenhagen, Denmark. It is able to catalyse the asymmetric oxidation of sulfides to give exclusively the R enantiomer. The type strain is DSM 13022.

<span class="mw-page-title-main">Flavobacteriia</span> Class of bacteria

The class Flavobacteriia is composed of a single class of environmental bacteria. It contains the family Flavobacteriaceae, which is the largest family in the phylum Bacteroidota. This class is widely distributed in soil, fresh, and seawater habitats. The name is often spelt Flavobacteria, but was officially named Flavobacteriia in 2012.

Sphingomonas abikonensis is a species of Gram-negative bacteria. Following 16S rRNA phylogenetic analysis, it was determined that the organism formerly classified as 'P.' abikonensis belonged in the Sphingomonas rRNA lineage. It is capable of forming freshwater biofilms.

In taxonomy, Stappia is a genus of the Hyphomicrobiales. Some members of the genus oxidize carbon monoxide (CO) aerobically. Stappia indica is a diatom associated bacterium which is known to inhibit the growth of diatoms such as Thalassiosira pseudonana.

Sakacins are bacteriocins produced by Lactobacillus sakei. They are often clustered with the other lactic acid bacteriocins. The best known sakacins are sakacin A, G, K, P, and Q. In particular, sakacin A and P have been well characterized.

Ultramicrobacteria are bacteria that are smaller than 0.1 μm3 under all growth conditions. This term was coined in 1981, describing cocci in seawater that were less than 0.3 μm in diameter. Ultramicrobacteria have also been recovered from soil and appear to be a mixture of Gram-positive, Gram-negative and cell-wall-lacking species. Ultramicrobacteria possess a relatively high surface-area-to-volume ratio due to their small size, which aids in growth under oligotrophic conditions. The relatively small size of ultramicrobacteria also enables parasitism of larger organisms; some ultramicrobacteria have been observed to be obligate or facultative parasites of various eukaryotes and prokaryotes. One factor allowing ultramicrobacteria to achieve their small size seems to be genome minimization such as in the case of the ultramicrobacterium P. ubique whose small 1.3 Mb genome is seemingly devoid of extraneous genetic elements like non-coding DNA, transposons, extrachromosomal elements etc. However, genomic data from ultramicrobacteria is lacking since the study of ultramicrobacteria, like many other prokaryotes, is hindered by difficulties in cultivating them.

Persister cells are subpopulations of cells that resist treatment, and become antimicrobial tolerant by changing to a state of dormancy or quiescence. Persister cells in their dormancy do not divide. The tolerance shown in persister cells differs from antimicrobial resistance in that the tolerance is not inherited and is reversible. When treatment has stopped the state of dormancy can be reversed and the cells can reactivate and multiply. Most persister cells are bacterial, and there are also fungal persister cells, yeast persister cells, and cancer persister cells that show tolerance for cancer drugs.

Cupriavidus metallidurans is a non-spore-forming, Gram-negative bacterium which is adapted to survive several forms of heavy metal stress.

Elusimicrobium minutum is an ultramicrobacterium and first accepted member to be cultured of a major bacterial lineage previously known only as candidate phylum Termite Gut 1 (TG1), which has accordingly been renamed phylum Elusimicrobiota. It was isolated in the laboratory of Andreas Brune at the Max Planck Institute for Terrestrial Microbiology, from the scarab beetle. It is a mesophilic, obligately anaerobic ultramicrobacterium with a gram-negative cell envelope. Cells are typically rod shaped, but cultures are pleomorphic in all growth phases. The isolate grows heterotrophically on sugars and ferments D-galactose, D-glucose, D-fructose, D-glucosamine, and N-acetyl-D-glucosamine to acetate, ethanol, hydrogen, and alanine as major products but only if amino acids are present in the medium

<i>Candidatus</i> Accumulibacter phosphatis Species of bacterium

Candidatus Accumulibacter phosphatis (CAP) is an unclassified type of Betaproteobacteria that is a common bacterial community member of sewage treatment and wastewater treatment plants performing enhanced biological phosphorus removal (EBPR) and is a polyphosphate-accumulating organism. The role of CAP in EBPR was elucidated using culture-independent approaches such as 16S rRNA clone banks that showed the Betaproteobacteria dominated lab-scale EBPR reactors. Further work using clone banks and fluorescence in situ hybridization identified a group of bacteria, closely related to Rhodocyclus as the dominant member of lab-scale communities.

<span class="mw-page-title-main">Rhamnolipid</span> Chemical compound

Rhamnolipids are a class of glycolipid produced by Pseudomonas aeruginosa, amongst other organisms, frequently cited as bacterial surfactants. They have a glycosyl head group, in this case a rhamnose moiety, and a 3-(hydroxyalkanoyloxy)alkanoic acid (HAA) fatty acid tail, such as 3-hydroxydecanoic acid.

Dehalogenimonas lykanthroporepellens is an anaerobic, Gram-negative bacteria in the phylum Chloroflexota isolated from a Superfund site in Baton Rouge, Louisiana. It is useful in bioremediation for its ability to reductively dehalogenate chlorinated alkanes.

Desulfovibrio desulfuricans is a Gram-negative sulfate-reducing bacteria. It is generally found in soil, water, and the stools of animals, although in rare cases it has been found to cause infection in humans. It is particularly noted for its ability to produce methyl mercury. The reductive glycine pathway, a seventh route for organisms to capture CO2, was discovered in this species. Since these bacteria are killed by exposure to atmospheric oxygen, the environmental niches most frequently occupied by these bacteria are anaerobic. Desulfovibrio desulfuricans 27774 was reported to produce gene transfer agents.

Andrew James McBain is a Professor of Microbiology at the University of Manchester. His research is focused on the human microbiome, responses of biofilms to antimicrobial treatments, and the interaction of microorganisms colonising the skin, nasopharynx, oral cavity and intestine.

Polaribacter is a genus in the family Flavobacteriaceae. They are gram-negative, aerobic bacteria that can be heterotrophic, psychrophilic or mesophilic. Most species are non-motile and species range from ovoid to rod-shaped. Polaribacter forms yellow- to orange-pigmented colonies. They have been mostly adapted to cool marine ecosystems, and their optimal growth range is at a temperature between 10 and 32 °C and at a pH of 7.0 to 8.0. They are oxidase and catalase-positive and are able to grow using carbohydrates, amino acids, and organic acids.

Dokdonia is a genus of bacteria in the family Flavobacteriaceae and phylum Bacteroidota.

Cytophagales is an order of non-spore forming, rod-shaped, Gram-negative bacteria that move through a gliding or flexing motion. These chemoorganotrophs are important remineralizers of organic materials into micronutrients. They are widely dispersed in the environment, found in ecosystems including soil, freshwater, seawater and sea ice. Cytophagales is included in the Bacteroidota phylum.

Lone Gram is Danish microbiologist known for her work in bacterial physiology, microbial communication, and biochemicals that originate from bacterial cultures. She is an elected member of the Royal Danish Academy of Sciences and Letters and has received the Order of the Dannebrog.

References

  1. "Dokdonia". www.uniprot.org.
  2. Parte, A.C. "Dokdonia". LPSN .
  3. Yoon, JH; Kang, SJ; Lee, CH; Oh, TK (2005). "Dokdonia donghaensis gen. nov., sp. nov., isolated from sea water". International Journal of Systematic and Evolutionary Microbiology. 55 (6): 2323–2328. doi: 10.1099/ijs.0.63817-0 . PMID   16280490.
  4. Bowman, JP; McCammon, SA; Brown, MV; Nichols, DS; McMeekin, TA (1997). "Diversity and association of psychrophilic bacteria in Antarctic sea ice". Appl Environ Microbiol. 63 (8): 3068–3078. Bibcode:1997ApEnM..63.3068B. doi: 10.1128/AEM.63.8.3068-3078.1997 . PMC   168604 . PMID   9251193.
  5. Glöckner, FO; Fuchs, BM; Amann, R (1999). "Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization". Appl Environ Microbiol. 65 (8): 3721–3726. Bibcode:1999ApEnM..65.3721G. doi: 10.1128/AEM.65.8.3721-3726.1999 . PMC   91558 . PMID   10427073.
  6. Kirchman, DL (2002). "The ecology of Cytophaga-Flavobacteria in aquatic environments". FEMS Microbiol Ecol. 39 (2): 91–100. doi:10.1016/s0168-6496(01)00206-9. PMID   19709188.
  7. Kim, K; Kwon, SK; Yoon, JH; Kim, JF (2016). "Complete genome sequence of the proteorhodopsin-containing marine flavobacterium Dokdonia donghaensis DSW-1T, isolated from seawater off Dokdo in the East Sea (Sea of Korea)". Genome Announc. 4 (4): e00804-16. doi:10.1128/genomea.00804-16. PMC   4974333 . PMID   27491981.
  8. DeLong, EF; Beja, O (2010). "The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times". PLOS Biol. 8 (4): e1000359. doi: 10.1371/journal.pbio.1000359 . PMC   2860490 . PMID   20436957.
  9. Wang, Y; Zhou, C; Ming, H; Kang, J; Chen, H; Jing, C; Feng, H; Chang, Y; Guo, Z; Wang, L (2016). "Pseudofulvibacter marinus sp. nov., isolated from seawater". Int J Syst Evol Microbiol. 66 (3): 1301–1305. doi: 10.1099/ijsem.0.000879 . PMID   26739348.
  10. Burmølle, M; Webb, JS; Rao, D; Hansen, LH; Sørensen, SJ; Kjelleberg, S (2006). "Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms". Appl Environ Microbiol. 72 (6): 3916–3923. Bibcode:2006ApEnM..72.3916B. doi:10.1128/aem.03022-05. PMC   1489630 . PMID   16751497.
  11. Yoon, JH; Kang, KH; Park, YH (2003). "Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood". Int J Syst Evol Microbiol. 53 (2): 449–454. doi: 10.1099/ijs.0.02242-0 . PMID   12710611.
  12. Fux, CA; Costerton, JW; Stewart, PS; Stoodley, P (2005). "Survival strategies of infectious biofilms". Trends Microbiol. 13 (1): 34–40. doi:10.1016/j.tim.2004.11.010. PMID   15639630. S2CID   10216159.
  13. Mah, TF; O'Toole, GA (2001). "Mechanisms of biofilm resistance to antimicrobial agents". Trends Microbiol. 9 (1): 34–39. doi: 10.1016/s0966-842x(00)01913-2 . PMID   11166241.
  14. Jefferson, KK (2004). "What drives bacteria to produce a biofilm?". FEMS Microbiol Lett. 236 (2): 163–173. doi: 10.1016/j.femsle.2004.06.005 . PMID   15251193.
  15. Matz, C; Kjelleberg, S (2005). "Off the hook—how bacteria survive protozoan grazing". Trends Microbiol. 13 (7): 302–307. doi:10.1016/j.tim.2005.05.009. PMID   15935676.
  16. Pasmore, M; Costerton, JW (2003). "Biofilms, bacterial signaling, and their ties to marine biology". J Ind Microbiol Biotechnol. 30 (7): 407–413. doi: 10.1007/s10295-003-0069-6 . PMID   12884126. S2CID   1458649.
  17. Taylor, MW; Schupp, PJ; Dahllöf, I; Kjelleberg, S; Steinberg, PD (2004). "Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity". Environ Microbiol. 6 (2): 121–130. doi:10.1046/j.1462-2920.2003.00545.x. PMID   14756877.
  18. Bhadury, P; Wright, PC (2004). "Exploitation of marine algae: biogenic compounds for potential antifouling applications". Planta. 219 (4): 561–78. doi:10.1007/s00425-004-1307-5. PMID   15221382. S2CID   34172675.