Dzihunia

Last updated

Dzihunia
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Cypriniformes
Family: Nemacheilidae
Genus: Dzihunia
Prokofiev, 2001
Type species
Nemacheilus amudarjensis
Rass, 1929

Dzihunia is a genus of stone loaches native to Central Asia.

Species

There are currently three recognized species in this genus: [1]

On the other hand, in a recent molecular study on DNA barcoding in fish from Uzbekistan, it was found that the species diversity of Dzihunia is more than three, as previously believed. [2]

Related Research Articles

<span class="mw-page-title-main">Angelshark</span> Genus of sharks

The angelsharks are a group of sharks in the genus Squatina of the family Squatinidae. They commonly inhabit sandy seabeds close to 150 m (490 ft) in depth. Many species are now classified as critically endangered by the International Union for Conservation of Nature. Once common over large areas of the Northeast Atlantic from Norway, Sweden, Morocco and the Canary Islands, to the Mediterranean and Black Seas, fishing pressure has resulted in significant population decline.

<span class="mw-page-title-main">Ganges shark</span> Species of shark

The Ganges shark is a critically endangered species of requiem shark found in the Ganges River and the Brahmaputra River of India and Bangladesh. It is often confused with the more common bull shark, which also inhabits the Ganges River and is sometimes incorrectly referred to as the Ganges shark. The genus is currently considered to contain three recent species; genetic evidence has shown that both the Borneo river shark and Irrawaddy river shark should be regarded as synonyms of the Ganges shark, expanding the range of the species to Pakistan, Myanmar, Borneo, and Java. While the other members of the genus Glyphis occur in coastal marine waters as well as rivers, the Ganges shark is found only in fresh water, making it the world's only exclusively freshwater shark. The species remains poorly known and very rare.

The Consortium for the Barcode of Life (CBOL) was an international initiative dedicated to supporting the development of DNA barcoding as a global standard for species identification. CBOL's Secretariat Office is hosted by the National Museum of Natural History, Smithsonian Institution, in Washington, DC. Barcoding was proposed in 2003 by Prof. Paul Hebert of the University of Guelph in Ontario as a way of distinguishing and identifying species with a short standardized gene sequence. Hebert proposed the 658 bases of the Folmer region of the mitochondrial gene cytochrome-C oxidase-1 as the standard barcode region. Hebert is the Director of the Biodiversity Institute of Ontario, the Canadian Centre for DNA Barcoding, and the International Barcode of Life Project (iBOL), all headquartered at the University of Guelph. The Barcode of Life Data Systems (BOLD) is also located at the University of Guelph.

<span class="mw-page-title-main">Species complex</span> Group of closely related similar organisms

In biology, a species complex is a group of closely related organisms that are so similar in appearance and other features that the boundaries between them are often unclear. The taxa in the complex may be able to hybridize readily with each other, further blurring any distinctions. Terms that are sometimes used synonymously but have more precise meanings are cryptic species for two or more species hidden under one species name, sibling species for two species that are each other's closest relative, and species flock for a group of closely related species that live in the same habitat. As informal taxonomic ranks, species group, species aggregate, macrospecies, and superspecies are also in use.

<span class="mw-page-title-main">Distichodontidae</span> Family of fishes

The Distichodontidae are a family of African freshwater fishes of the order Characiformes.

Garra kemali is a species of cyprinid fish, which is found only in Turkey, in swamps and freshwater lakes. It is threatened by a habitat loss.

Poblana is a genus of Neotropical silversides that are endemic to Mexico, with each of the four threatened species restricted to a single Oriental Basin maar lake. They are small fish that do not surpass 8 cm (3 in) in standard length.

A species (pl. species) is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined.

<span class="mw-page-title-main">DNA barcoding</span> Method of species identification using a short section of DNA

DNA barcoding is a method of species identification using a short section of DNA from a specific gene or genes. The premise of DNA barcoding is that by comparison with a reference library of such DNA sections, an individual sequence can be used to uniquely identify an organism to species, just as a supermarket scanner uses the familiar black stripes of the UPC barcode to identify an item in its stock against its reference database. These "barcodes" are sometimes used in an effort to identify unknown species or parts of an organism, simply to catalog as many taxa as possible, or to compare with traditional taxonomy in an effort to determine species boundaries.

<i>Californiconus</i> Genus of gastropods

Californiconus is a genus of sea snails, marine gastropod mollusks. The experts at WoRMS place this group of species in the family Conidae, the cone snails, but some other experts placed previously the genus in a proposed family, the Conilithidae. This is a monotypic genus.

<span class="mw-page-title-main">Environmental DNA</span> DNA sampled from the environment rather than directly from an individual organism

Environmental DNA or eDNA is DNA that is collected from a variety of environmental samples such as soil, seawater, snow or air, rather than directly sampled from an individual organism. As various organisms interact with the environment, DNA is expelled and accumulates in their surroundings from various sources.

<span class="mw-page-title-main">Armophorea</span> Class of single-celled organisms

Armophorea is a class of ciliates in the subphylum Intramacronucleata. . It was first resolved in 2004 and comprises three orders: Metopida, Clevelandellida, and Armophorida. Previously members of this class were thought to be heterotrichs because of similarities in morphology, most notably a characteristic dense arrangement of cilia surrounding their oral structures. However, the development of genetic tools and subsequent incorporation of DNA sequence information has led to major revisions in the evolutionary relationships of many protists, including ciliates. Metopids, clevelandellids, and armophorids were grouped into this class based on similarities in their small subunit rRNA sequences, making them one of two so-called "riboclasses" of ciliates, however, recent analyses suggest that Armophorida may not be related to the other two orders.

<i>Linopodes</i> Genus of mites

Linopodes is a cosmopolitan genus of mites in the family Cocceupodidae. There are at least two described species.

<span class="mw-page-title-main">Aquatic macroinvertebrate DNA barcoding</span>

DNA barcoding is an alternative method to the traditional morphological taxonomic classification, and has frequently been used to identify species of aquatic macroinvertebrates. Many are crucial indicator organisms in the bioassessment of freshwater and marine ecosystems.

<span class="mw-page-title-main">Algae DNA barcoding</span> Technique used for species identification and phylogenetic studies

DNA barcoding of algae is commonly used for species identification and phylogenetic studies. Algae form a phylogenetically heterogeneous group, meaning that the application of a single universal barcode/marker for species delimitation is unfeasible, thus different markers/barcodes are applied for this aim in different algal groups.

Microbial DNA barcoding is the use of DNA metabarcoding to characterize a mixture of microorganisms. DNA metabarcoding is a method of DNA barcoding that uses universal genetic markers to identify DNA of a mixture of organisms.

<span class="mw-page-title-main">Fish DNA barcoding</span>

DNA barcoding methods for fish are used to identify groups of fish based on DNA sequences within selected regions of a genome. These methods can be used to study fish, as genetic material, in the form of environmental DNA (eDNA) or cells, is freely diffused in the water. This allows researchers to identify which species are present in a body of water by collecting a water sample, extracting DNA from the sample and isolating DNA sequences that are specific for the species of interest. Barcoding methods can also be used for biomonitoring and food safety validation, animal diet assessment, assessment of food webs and species distribution, and for detection of invasive species.

<span class="mw-page-title-main">DNA barcoding in diet assessment</span>

DNA barcoding in diet assessment is the use of DNA barcoding to analyse the diet of organisms. and further detect and describe their trophic interactions. This approach is based on the identification of consumed species by characterization of DNA present in dietary samples, e.g. individual food remains, regurgitates, gut and fecal samples, homogenized body of the host organism, target of the diet study.

<span class="mw-page-title-main">Fungal DNA barcoding</span> Identification of fungal species thanks to specific DNA sequences

Fungal DNA barcoding is the process of identifying species of the biological kingdom Fungi through the amplification and sequencing of specific DNA sequences and their comparison with sequences deposited in a DNA barcode database such as the ISHAM reference database, or the Barcode of Life Data System (BOLD). In this attempt, DNA barcoding relies on universal genes that are ideally present in all fungi with the same degree of sequence variation. The interspecific variation, i.e., the variation between species, in the chosen DNA barcode gene should exceed the intraspecific (within-species) variation.

<span class="mw-page-title-main">Metabarcoding</span> Genetic technique for identifying organisms in mixed samples

Metabarcoding is the barcoding of DNA/RNA in a manner that allows for the simultaneous identification of many taxa within the same sample. The main difference between barcoding and metabarcoding is that metabarcoding does not focus on one specific organism, but instead aims to determine species composition within a sample.

References

  1. Froese, Rainer and Pauly, Daniel, eds. (2012). Species of Dzihunia in FishBase . December 2012 version.
  2. Sheraliev, Bakhtiyor; Peng, Zuogang (2021). "Molecular diversity of Uzbekistan's fishes assessed with DNA barcoding". Scientific Reports. 11: 16894. doi: 10.1038/s41598-021-96487-1 . ISSN   2045-2322. PMC   8376971 . PMID   34413445. S2CID   237242923.