Elizabethkingia anophelis

Last updated

Elizabethkingia anophelis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Bacteroidota
Class: Flavobacteriia
Order: Flavobacteriales
Family: Weeksellaceae
Genus: Elizabethkingia
Species:
E. anophelis
Binomial name
Elizabethkingia anophelis
Kämpfer et al. 2011

Elizabethkingia anophelis is a yellow-pigmented, rod-shaped, gram-negative bacterium in the Flavobacteriaceae family. [1] Elizabethkingia is isolated from the midgut of Anopheles gambiae G3 mosquitoes reared in captivity. [2] [1] The genus Elizabethkingia , named for former US Centers for Disease Control and Prevention (CDC) microbiologist Elizabeth O. King, [3] also includes E. meningoseptica which causes neonatal sepsis and infections in immunocompromised persons, E. endophytica , and E. miricola .

Contents

The possibility of the role of mosquitoes in the maintenance and transmission of E. anophelis remains unclear. [4]

History

In 1959, Elizabethkingia was discovered by a microbiologist at the United States Center for Disease Control, and in 2011, Kampfer et al. isolated Elizabethkingia anophelis from the midgut of Anopheles gambiae. [1]

Elizabeth King: E. anophelis was named after she discovered Elizabethkingia bacteria Elizabeth King.jpg
Elizabeth King: E. anophelis was named after she discovered Elizabethkingia bacteria

Biology and biochemistry

Morphology

E. anophelis is a Gram-negative bacterium that appears slightly yellow and is characterized by its non-motile and non-spore-forming nature. [1] Its cells typically have a rod-like shape and a genome size of around 4.03 Mbp, with an average GC content of 35.4%. [2] E. anophelis is known to be a prevalent inhabitant in the gut of Anopheles gambiae mosquitoes, the primary vector of malaria, and it is also capable of causing disease in humans. [3] In 2013, E. anophelis was identified as a human pathogen in Central Africa during an outbreak that occurred in an intensive care unit in Singapore. Both clinical cases reported multidrug resistance. [3]

Metabolism

Elizabethkingia anophelis uses complex carbohydrates, also known as glycans, in its metabolism. It has a starch-utilization system (Sus) that includes several proteins. [2] The bacterium's major fatty acids exhibit a complex polar lipid profile consisting of di-phosphatidylglycerol, phosphatidylinositol, the complex polar lipid profile also consists of an unknown phospholipid, and unknown polar lipids and glycolipids. E. anophelis produces several hemolysins that are thought to assist in the digestion of erythrocytes in the mosquito's gut. [2]

The bacterium utilizes polymers by using numerous TonB-dependent transporters (TBDTs) with various substrate specificities. These transporters actively take up essential nutrients and other substrates, including but not limited to iron complexes, vitamin B12, nickel, carbohydrates, and colicin. [2] To energize the transport process, TBDTs interact with the TonB complex, a cytoplasmic transmembrane assembly of proteins coupled with the TonB in the periplasm. [2]

E. anophelis is known for its intrinsic resistance to a wide range of antibiotics due to mechanisms such as enzymatic degradation of the drug, alteration of the target drug site, and direct extrusion of the drug from the cells using efflux pumps as well as β-lactamases. [2] The bacterium has also evolved to initiate a stress response when the cell begins to undergo oxidative stress. E. anophelis also produces OxyR regulon and antioxidants as a stress response to defend against the oxidative stress that can be associated with mosquitoes during the process of blood digestion. One study suggests that features of E. anophelis including growth, hydrogen peroxide tolerance, cell attachment, and biofilm formation are due to the presence of hemoglobin in the gut of the mosquito. [2]

Ecology

Anopheles mosquito Anopheles gambiae mosquito feeding 1354.p lores.jpg
Anopheles mosquito

Elizabethkingia anophelis has a unique ecological niche, as it is primarily found in the midgut of the Anopheles mosquito, which is a known malaria vector. [5] It is also a pathogen that can cause infections in humans, particularly those with compromised immune systems. The bacterium has a mutualistic relationship with the mosquito, where it helps digest blood meals and promote the growth of other gut microbiota. [2] E. anophelis has also been found in diverse environments such as soil, water, and hospital settings. In hospital settings, it has been isolated from a range of sources including blood, respiratory secretions, and wounds. [6]

Role in disease

Medical importance

A 2014 study showed that some Elizabethkingia infections that had been attributed to Elizabethkingia meningoseptica were instead caused by Elizabethkingia anophelis. [7] E. anophelis has been reported to cause neonatal meningitis in the Central African Republic, and a nosocomial outbreak has been reported in an intensive care unit in Singapore. [8]

An outbreak centered in Wisconsin began in early November 2015, with 48 people confirmed infected in 12 counties and at least 18 deaths by March 9, 2016, and four new cases documented just in the week of 2–9 March 2016. [9] By April 13, 2016, the infection had spread first to western Michigan and then to Illinois, with 61 confirmed cases and 21 deaths. [10]

The CDC notes that the infections leading to death occurred in persons over the age of 65 who had other health conditions, leading to uncertainty as to whether E. anophelis was the cause of death, or if the cause was a combination of E. anophelis and preexisting health conditions. [11]

Diagnosis

Cases are typically diagnosed through the culture of body fluids, most commonly blood testing. [12]

Transmission

The transmission route remains unknown. [13]

Treatment

The treatment of Elizabethkingia anophelis infections can vary depending on the severity of the infection and the susceptibility of the bacteria to antimicrobial agents. In general, treatment may involve the use of antibiotics E. anophelis has properties of antibiotic resistance making antibiotic susceptibility testing a must to guide the choice of antimicrobial therapy. [10]

E. anophelis has shown resistance to many antibiotics, which can complicate the treatment plan. Some of the antibiotic resistance occurs when the bacterium is introduced to carbapenems, cephalosporins, and aminoglycosides. [12] If deemed effective by the patient’s healthcare provider an antibiotic combination may be prescribed.

In addition to antibiotics, a healthcare provider can choose to supplement care with fluids and oxygen therapy. These additives may be necessary for severely ill patients. [14]

Related Research Articles

<span class="mw-page-title-main">Malaria</span> Mosquito-borne infectious disease

Malaria is a mosquito-borne infectious disease that affects humans and other vertebrates. Human malaria causes symptoms that typically include fever, fatigue, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. Symptoms usually begin 10 to 15 days after being bitten by an infected Anopheles mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria.

<span class="mw-page-title-main">Mosquito</span> Family of flies

Mosquitoes are approximately 3,600 species of small flies comprising the family Culicidae. The word "mosquito" is Spanish for "little fly". Mosquitoes have a slender segmented body, one pair of wings, one pair of halteres, three pairs of long hair-like legs, and elongated mouthparts.

<i>Plasmodium</i> Genus of parasitic protists that can cause malaria

Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria. During this infection, some parasites are picked up by a blood-feeding insect, continuing the life cycle.

<i>Anopheles</i> Genus of mosquito

Anopheles or Marsh Mosquitoes is a genus of mosquito first described and named by J. W. Meigen in 1818. About 460 species are recognized; while over 100 can transmit human malaria, only 30–40 commonly transmit parasites of the genus Plasmodium, which cause malaria in humans in endemic areas. Anopheles gambiae is one of the best known, because of its predominant role in the transmission of the most dangerous malaria parasite species – Plasmodium falciparum.

<span class="mw-page-title-main">Mosquito net</span> Fine net used to exclude mosquitos and other biting insects

A mosquito net is a type of meshed curtain that is circumferentially draped over a bed or a sleeping area, to offer the sleeper barrier protection against bites and stings from mosquitos, flies, and other pest insects, and thus against the diseases they may carry. Examples of such preventable insect-borne diseases include malaria, dengue fever, yellow fever, zika virus, Chagas disease and various forms of encephalitis, including the West Nile virus.

<i>Anopheles gambiae</i> Species of mosquito

The Anopheles gambiae complex consists of at least seven morphologically indistinguishable species of mosquitoes in the genus Anopheles. The complex was recognised in the 1960s and includes the most important vectors of malaria in sub-Saharan Africa, particularly of the most dangerous malaria parasite, Plasmodium falciparum. It is one of the most efficient malaria vectors known. The An. gambiae mosquito additionally transmits Wuchereria bancrofti which causes lymphatic filariasis, a symptom of which is elephantiasis.

Paratransgenesis is a technique that attempts to eliminate a pathogen from vector populations through transgenesis of a symbiont of the vector. The goal of this technique is to control vector-borne diseases. The first step is to identify proteins that prevent the vector species from transmitting the pathogen. The genes coding for these proteins are then introduced into the symbiont, so that they can be expressed in the vector. The final step in the strategy is to introduce these transgenic symbionts into vector populations in the wild. One use of this technique is to prevent mortality for humans from insect-borne diseases. Preventive methods and current controls against vector-borne diseases depend on insecticides, even though some mosquito breeds may be resistant to them. There are other ways to fully eliminate them. “Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit.” The acidic bacteria Asaia symbionts are beneficial in the normal development of mosquito larvae; however, it is unknown what Asais symbionts do to adult mosquitoes.

<span class="mw-page-title-main">Avian malaria</span> Parasitic disease of birds

Avian malaria is a parasitic disease of birds, caused by parasite species belonging to the genera Plasmodium and Hemoproteus. The disease is transmitted by a dipteran vector including mosquitoes in the case of Plasmodium parasites and biting midges for Hemoproteus. The range of symptoms and effects of the parasite on its bird hosts is very wide, from asymptomatic cases to drastic population declines due to the disease, as is the case of the Hawaiian honeycreepers. The diversity of parasites is large, as it is estimated that there are approximately as many parasites as there are species of hosts. As research on human malaria parasites became difficult, Dr. Ross studied avian malaria parasites. Co-speciation and host switching events have contributed to the broad range of hosts that these parasites can infect, causing avian malaria to be a widespread global disease, found everywhere except Antarctica.

<span class="mw-page-title-main">Mosquito-borne disease</span> Diseases caused by bacteria, viruses or parasites transmitted by mosquitoes

Mosquito-borne diseases or mosquito-borne illnesses are diseases caused by bacteria, viruses or parasites transmitted by mosquitoes. Nearly 700 million people get a mosquito-borne illness each year resulting in over 725,000 deaths.

Rickettsia felis is a species of bacterium, the pathogen that causes cat-flea typhus in humans, also known as flea-borne spotted fever. Rickettsia felis also is regarded as the causative organism of many cases of illnesses generally classed as fevers of unknown origin in humans in Africa.

<i>Anopheles albimanus</i> Species of mosquito

Anopheles albimanus is a species of mosquito in the order Diptera. It is found in coastal Central and South America, the Caribbean, and Mexico. It is a generalist species and capable of wide dispersion. A. albimanus is a common malaria vector.

<i>Anopheles stephensi</i> Species of fly

Anopheles stephensi is a primary mosquito vector of malaria in urban India and is included in the same subgenus as Anopheles gambiae, the primary malaria vector in Africa. A. gambiae consists of a complex of morphologically identical species of mosquitoes, along with all other major malaria vectors; however, A. stephensi has not yet been included in any of these complexes. Nevertheless, two races of A. stephensi exist based on differences in egg dimensions and the number of ridges on the eggs; A. s. stephensisensu stricto, the type form, is a competent malaria vector that takes place in urban areas, and A. s. mysorensis, the variety form, exists in rural areas and exhibits considerable zoophilic behaviour, making it a poor malaria vector. However, A. s. mysorensis is a detrimental vector in Iran. An intermediate form also exists in rural communities and peri-urban areas, though its vector status is unknown. About 12% of malaria cases in India are due to A. stephensi.

Plasmodium coatneyi is a parasitic species that is an agent of malaria in nonhuman primates. P. coatneyi occurs in Southeast Asia. The natural host of this species is the rhesus macaque and crab-eating macaque, but there has been no evidence that zoonosis of P. coatneyi can occur through its vector, the female Anopheles mosquito.

Thioester containing protein 1, often called TEP1 is a key component of the arthropod innate immune system. TEP1 was first identified as a key immunity gene in 2001 through functional studies on Anopheles gambiae mosquitoes.

<span class="mw-page-title-main">Thorselliaceae</span> Genus of bacteria

Thorselliaceae is a family of bacteria belonging to the class Gammaproteobacteria and it was first described in February 2015. It is not assigned to an order. The family consists of four species in two genera. The bacteria are Gram-negative and rod shaped, approximately 1 μm wide and 2 μm long. They are facultative anaerobes and motile. Thorselliaceae bacteria have been found around the world associated with vector mosquitoes, mainly with vectors of malaria.

Anopheles nili is a species of mosquito in the Culicidae family. It comprises the following elements: An. carnevalei, An. nili, An. ovengensis and An. somalicus. The scientific name of this species was first published in 1904 by Theobald. It is the main mosquito species found in the south Cameroon forest zone which bites humans. It is known as a problematic carrier of malaria, although newly discovered, closely related species in the same genus have also been found to interact with A. nili as a disease vector. In that, they both have similar feeding habits on local targets in the Cameroon region.

<span class="mw-page-title-main">Elizabeth O. King</span> American bacteriologist (1912–1966)

Elizabeth Osborne King was an American microbiologist who discovered and described bacteria of medical importance at the United States Centers for Disease Control and Prevention from the late 1940s through the early 1960s. A 1984 CDC manual dedication referred to King as "internationally known as an authority on a variety of unusual bacteria." The genera Kingella and Elizabethkingia and several species of bacteria are named to honor her for her pioneering work. King died of cancer on April 8, 1966, in Atlanta, where she is interred in Oakland Cemetery.

Elizabethkingia is a genus of bacterium described in 2005, named after Elizabeth O. King, the discoverer of the type species. Before this genus being formed in 2005, many of the species of Elizabethkingia were classified in the Chryseobacterium genus. Elizabethkingia has been found in soil, rivers, and reservoirs worldwide.

<span class="mw-page-title-main">Airport malaria</span> Medical condition

Airport malaria, sometimes known as baggage, luggage or suitcasemalaria, occurs when a malaria infected female Anopheles mosquito travels by aircraft from a country where malaria is common, arrives in a country where malaria is usually not found, and bites a person at or around the vicinity of the airport, or if the climate is suitable, travels in luggage and bites a person further away. The infected person usually presents with a fever in the absence of a recent travel history. There is often no suspicion of malaria, resulting in a delay in diagnosis. It is typically considered as a diagnosis after other explanations for symptoms have been ruled out.

<span class="mw-page-title-main">Climate change and infectious diseases</span> Overview of the relationship between climate change and infectious diseases

Global climate change has increased the occurrence of some infectious diseases. Those infectious diseases whose transmission is impacted by climate change include for example the vector-borne diseases dengue fever, malaria, tick-borne diseases, leishmaniasis, zika fever, chikungunya and Ebola virus disease. One of the mechanisms for increased disease transmission is that climate change is altering the geographic range and seasonality of the insects that can carry the diseases. Scientists stated a clear observation in 2022: "the occurrence of climate-related food-borne and waterborne diseases has increased ."

References

  1. 1 2 3 4 Kämpfer, P; Matthews, H; Glaeser, SP; Martin, K; Lodders, N; Faye, I (November 2011). "Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae". International Journal of Systematic and Evolutionary Microbiology. 61 (Pt 11): 2670–5. doi: 10.1099/ijs.0.026393-0 . PMID   21169462.
  2. 1 2 3 4 5 6 7 8 9 Lindh, J.M.; Borg-Karlson, A.-K.; Faye, I. (2008). "Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water". Acta Tropica. 107 (3): 242–250. doi: 10.1016/j.actatropica.2008.06.008 . PMID   18671931.
  3. 1 2 3 Kim, Kwang Kyu; Kim, Myung Kyum; Lim, Ju Hyoung; Park, Hye Yoon; Lee, Sung-Taik (1 May 2005). "Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov". International Journal of Systematic and Evolutionary Microbiology. 55 (3): 1287–1293. doi: 10.1099/ijs.0.63541-0 . PMID   15879269.
  4. Lau, Susanna K.P.; Wu, Alan K.L.; Teng, Jade L.L.; Tse, Herman; Curreem, Shirly O.T.; Tsui, Stephen K.W.; et al. (February 2015). "Evidence for Elizabethkingia anophelis Transmission from Mother to Infant, Hong Kong". Emerging Infectious Diseases. 21 (2): 232–241. doi:10.3201/eid2102.140623. PMC   4313635 . PMID   25625669.
  5. Kukutla, Phanidhar; Lindberg, Bo G.; Pei, Dong; Rayl, Melanie; Yu, Wanqin; Steritz, Matthew; Faye, Ingrid; Xu, Jiannong (2014-05-19). Tu, Zhijian (ed.). "Insights from the Genome Annotation of Elizabethkingia anophelis from the Malaria Vector Anopheles gambiae". PLOS ONE. 9 (5): e97715. doi: 10.1371/journal.pone.0097715 . ISSN   1932-6203. PMC   4026382 . PMID   24842809.
  6. "Elizabethkingia". Wisconsin Department of Health Services. 2021-09-28. Retrieved 2023-05-02.
  7. Teo, J.; Tan, S. Y.-Y.; Liu, Y.; Tay, M.; Ding, Y.; Li, Y.; Kjelleberg, S.; Givskov, M.; Lin, R. T. P.; Yang, L. (6 May 2014). "Comparative Genomic Analysis of Malaria Mosquito Vector-Associated Novel Pathogen Elizabethkingia anophelis". Genome Biology and Evolution. 6 (5): 1158–1165. doi:10.1093/gbe/evu094. PMC   4041001 . PMID   24803570.
  8. Lau, Susanna K.P.; Wu, Alan K.L.; Teng, Jade L.L.; Tse, Herman; Curreem, Shirly O.T.; Tsui, Stephen K.W.; et al. (February 2015). "Evidence for Elizabethkingia anophelis Transmission from Mother to Infant, Hong Kong". Emerging Infectious Diseases. 21 (2): 232–241. doi:10.3201/eid2102.140623. PMC   4313635 . PMID   25625669.
  9. Baillon, Rachelle (9 March 2016). "Elizabethkingia: It may be "weeks rather than days" before we know source of infection". FOX6Now.com. Milwaukee, Wisconsin. Retrieved 15 April 2016.
  10. 1 2 "Multistate Outbreak of Infections Caused by Elizabethkingia anophelis". Centers for Disease Control and Prevention (CDC). March 30, 2016. Retrieved April 13, 2016.
  11. "Recent Outbreaks". Centers for Disease Control and Prevention (CDC). June 16, 2016. Retrieved September 18, 2016.
  12. 1 2 Vallie, Sarah. "What Is Elizabethkingia?". WebMD. Retrieved 2023-04-27.
  13. "About Elizabethkingia | Elizabethkingia | CDC". www.cdc.gov. 2018-10-12. Retrieved 2023-04-27.
  14. "Elizabethkingia Infections Treatment & Management: Approach Considerations, Prevention". 2023-03-03.{{cite journal}}: Cite journal requires |journal= (help)