Environmental epigenetics

Last updated

Environmental epigenetics is a branch of epigenetics that studies the influence of external environmental factors on the gene expression of a developing embryo. [1] The way that genes are expressed may be passed down from parent to offspring through epigenetic modifications, although environmental influences do not alter the genome itself.

Contents

During embryonic development, epigenetic modifications determine which genes are expressed, which in turn determines the embryo's phenotype. When the offspring is still developing, genes can be turned on and off depending on exposure to certain environmental factors. While certain genes being turned on or off can increase the risk of developmental diseases or abnormal phenotypes, there is also the possibility that the phenotype will be non-functional. [2] Environmental influence on epigenetics is highly variable, but certain environmental factors can greatly increase the risk of detrimental diseases being expressed at both early and adult life stages. [3]

Environmental triggers for epigenetic change

The way that genes are expressed is influenced by the environment that the genome is in. These environmental influences are referred to as triggers and can involve anything that influences normal gene expression. How the genome is expressed depends on the environmental factors present during gestation. It is possible for the environmental effects of epigenetics to be deleterious or to be a natural part of the development pathway. [4] When these environmental factors are detrimental it causes the deactivation of some DNA sequences, which can lead to atypical phenotypes. Some of the most common triggers include diet, temperature, exposure to harmful substances, and lifestyle. These triggers can cause low birth weight, neurological disorders, cancers, autoimmune diseases, and many other malformations.

These epigenetic triggers can change the way that an organism develops and have lifelong effects. Epigenetic changes can be passed down through offspring, present in multiple generations, and continue to change throughout a lifetime. Each sequence of affected DNA is not expressed at the same time. There are specific stages in which these expressions happen during development. [5] The combined epigenetic mechanisms of DNA methylation and histone modification are responsible for how the genome is altered. For example, the suppression of oncogenes is regulated by DNA methylation and whether or not methylation is activated. This activation depends on the environment. [4] When these activations happen, they can be passed down to the next generation through germ-cell differentiation.

Examples of triggers

Nutrients

Offspring can experience phenotypic changes depending on their access to nutrients. When nutrients are limited during pregnancy, the offspring's phenotypic expression can be disrupted. Nutrient intake is also important during lactation for the purpose of transferring nutrients to the offspring. [6]

Stress during pregnancy

When the maternal figure is exposed to stressors it can lead to a greater likelihood of expressing or stunting DNA expression. If the maternal figure experiences high levels of depression or stress it can lead to small litter sizes with lower birth rates. Decreased hormone production is the suspected cause of this. [7]

Cold weather affects the likelihood of a butterfly finding a mate and reproducing, as well as their coloring. These insects are dependent on their coloring to survive and reproduce. Monarch butterflies. (34139205320).jpg
Cold weather affects the likelihood of a butterfly finding a mate and reproducing, as well as their coloring. These insects are dependent on their coloring to survive and reproduce.

Temperature

Changes in temperature can have varied effects on an organism. DNA methylation can be impacted by temperature when the temperature deviates from its normal value, preventing regular processes from taking place. Temperature can be considered a stressor in environmental epigenetics since it has the potential to change how offspring respond and react to their environment. [2] Monarch butterflies are an example of how temperature can impact the survival and fitness of an organism. [8] If exposed to stressors such as varying temperatures, these butterflies may express coloring that deviates from their normal color.

Lifestyle choices

Epigenetic marks can result from a number of exposures and choices made by an individual in their lifetime. Exposure to environmental pollutants, psychological stress, dietary choices or restrictions, working habits, and consumption of drugs or alcohol all influence the epigenetics of an individual and what may be passed down to future offspring. [9] Such exposures can affect important processes of epigenetics such as DNA methylation and histone acetylation, influencing the risk for noncommunicable diseases such as obesity.

Exposure

Exposure to certain materials or chemicals can cause an epigenetic reaction. The epigenetic causing substances cause issues like altered DNA methylation, CpG islands, chromatin, along with other transcription factors. [10] Environmental epigenetics aims to relate such environmental triggers or substances to phenotypic variation. [11] Numerrous studies have demonstrated how exposure to environmental pollutants, such as heavy metals, pesticides, and air pollutants, can induce epigenetic changes in various organisms. [12] For example, research has shown that exposure to pollutants like biphenol A (BPA) and polycyclic acromatic hydrocarbons (PAHs) can lead to DNA methylation changes and histone modifications in plants, animals, and humans. [13]

Epigentic mechanisms play a role in the adaptation of species of changing environmental conditions, including climate change. [14] Studies have shown that organisms can exhibit phenotypic plasticity through epigenetic modifications in response to environmental stressors such as temperature fluctuation, drought, and habitat loss. [15]

Environmental epigenetics has revealed the potential for transgenerational effects, where environmental exposures experienced by one generation can influence the phenotypes and health outcomes of subsequent generations through epigenetic inheritance mechanisms. [16] Studies in various organisms, including plants, insects, and mammals, have shown transgenerational epigenetic effects resulting from parental exposure to stressors such as toxins, dietary changes, and environmental contaminants. [17] Epigenetic modifications can influence gene expression and phenotypic traits in oragamisms across different trophic levels, with implications for ecosystem stability. [18]

Lemon sharks

An example of exposure causing environmental epigenetic can be seen in lemon sharks, Negaprion brevirostris. Due to a dredging event, lemon sharks in the Bahamas experienced an epigenetic change. Dredging is done with a machine that clears out all mud and debris found at the bottom of a body of water. Dredging is extremely harmful to the physical environment and the organisms living there. This dredging caused exposure to different toxic metals like Manganese along with other trace amount of heavy metals, which then affected DNA methylation in juvenile lemon sharks. This exposure caused the lemon sharks’ DNA to methylate at abnormal rates which caused gene expression to be altered. Scientists hypothesized that this aberrant DNA methylation could be caused by the stress that the dredging caused. Exposure to a stressful event is also an example of an environmental epigenetic factor. [19]

Plants

Plants need some types of metals to help with their development, but when exposed to high amounts, the metals can become toxic to plants. Since plants can process metals that are important for their growth, they also process metals that are not needed to help them grow and develop. Once the levels of the metals get too high, they start to affect plants directly and indirectly because metals cannot be broken down. Direct toxic effects that occur due to high levels of metal are inhibition of cytoplasmic and damage to the structure of the cell because of oxidative stress. Oxidative stress is like a bad storm that messes up the plant by damaging it so it cannot get the nutrients it needs to be healthy because things that are not supposed to be there are taking up space where the essential nutrients should go. Indirect toxic effects are the proxy nutrients at the plant's cation exchange. The cation exchange site is where the plant picks up the nutrients it needs, though if something comes in and starts taking all the valuable nutrients, such as heavy metal, there is nothing there to help the plant grow. An example of a heavy metal that is not required for plant growth is mercury. The relationship between Hg in the soil and how much plants take in is complex. It relies on many other factors, such as the pH of the soil, the type of plant species, etc.

Many types of heavy metals are toxic to plants, such as lead. Typically, land plants absorb lead(Pb) from the soil, most retaining it in their roots with some evidence of foliage uptakes and potential distribution to other plant parts. Calcium and phosphorus can reduce the uptake of lead, a common and toxic soil element that impacts the plant, growth structure, and photosynthesis of the plant. Lead, in particular, inhibits the process by which a plant grows from a seed into a seedling, known as seed germination in various species, by interfering with crucial enzymes. Studies have shown that lead acetate reduces protease and amylase activity in rice endosperm considerably. This interferes with early seeding growth across plant species such as soybean, rice, tomato, barley, maize, and some legumes.

Furthermore, lead delays root and steam elongation and leaf expansion, with the extent of root elongation inhibition varying based on the lead concentration, the medium's ionic composition, and pH. [20] Soil levels that have high levels of lead can also cause irregular root thickening, cell wall modifications in peas, growth reduction in sugar beets, oxidative stress due to increased reactive oxygen species (ROS) production, biomass, and protein content in maize, along with diminished lead count and area, plant height in Portia trees, and enzyme activity affecting CO2 fixation in oats.

Manganese (Mn), is crucial for plants and involves in photosynthesis and other physiological processes. Deficiency commonly affects sandy, organic, or tropical soils with a high pH above six and heavily weathered tropical soils. Mn can move easily from roots to shoots, though it is not efficiently redistributed from leaves to other parts of the plant. The signs of Mn toxicity are necrotic brown spots on leaves, petioles, and steams that start on the lower leaves and move upward, leading to death. [21] [22] When damage to young leaves and stems, coupled with chlorosis and browning, called a "crinkle leaf." In some species, toxicity can begin with chlorosis in older leaves, advancing to younger ones, and can inhibit chlorophyll synthesis by interfering with iron-related processes. [23] Mn toxicity is more present in soils with a pH level lower than six. In the broad bean plant, Mn affects shoot and root length [24] The spearmint plant, lowers chlorophyll and carotenoid levels and increases root Mn accumulation. [25] Pea plant, lowers chlorophyll a and b, growth rate, and photosynthesis. [26] In the tomato plant, it slows growth and decreases chlorophyll concentration. [27] [28]

Humans

Humans have displayed evidence of epigenetic changes such as DNA methylation, differentiation in expression, and histone modification due to environmental exposures. Carcinogen development in humans has been studied in correlation to environmental inducements such as chemical and physical exposures and their transformative abilities on epigenetics. Chemical and physical environmental factors are contributors to epigenetic statuses amongst humans. [11]

Firstly, a study was performed on drinking water populations in China involving three generations: the F1 generation consisting of grandparents exposed to arsenic in adulthood, the F2 generation including the parents exposed to arsenic in utero and early childhood, and the F3 generation which were the grandchildren exposed to arsenic from germ cells. [29] This area in China was historically known for its dangerously high levels of arsenic, therefore, there was opportunity to examine the timeline As exposures across the three generations. The study was conducted to discover the linkage between the timeline effects of As exposure and DNA methylations. The population and environment for which the study was conducted were reportedly not exposed to other environmental exposures besides arsenic. [29]

The results concluded from this experiment were that 744 CpG sites [30] had been differentially methylated. The 744 sites were found across all three generations in the group exposed to arsenic. The concluding argument based on the results of this study is that the DNA methylation changes were more prevalent in those that developed arsenic-induced diseases. [29]

Exposures to environmental factors during human lifetimes and their potential effect on phenotypes is a highly question topic involving epigenetics and disease development. [11] In the case of humans, "unhealthy" phenotypes have been identified to carry such evidence that environmental epigenetics could be a leading cause in gene regulation, disease development, cell development and differentiation, aging, and carcinogenic effect. [11] Although the way that environmental factors and the human genome work together is not completely understood, their influence has been identified and is continuing to drive explanations for human genome modifications and their outcomes. Driving evidence for adverse effects implemented by extrinsic factors from the environment, comes from studies done on nutrition and exposures to toxins. [11]

Besides arsenic exposures, other metals have been identified to cause such hypermethylations. Concentrations of Cd, Cr, Cu, Pb and Zn metals were identified in fishermen's blood and resulted in an increase in the expression of the IGF2 gene. [31] The IGF2 gene is responsible for making the insulin-like growth factor 2. [32] The insulin-like growth factor is involved in growth and can result in disorders where cell growth and overgrowth are abnormal. [33] Such disorders include breast and lung cancers and Silver–Russell and Beckwith–Wiedemann syndromes [33] [34] The significance of IGF2 gene expression is found in its relationships to human health. There is remaining uncertainty between the long-term environmental exposures and epigenetic changes, but conducted research has provided that heavy metal exposures cause DNA methylation changes. [31]

Exposures to certain triggers such as alcohol or drugs can disrupt the normal expression of the offspring's phenotype. Antipsychotic drugs can lead to abnormal or stunted development during the fetal or embryonic stages. [35]

Multigenerational epigenetic inheritance

Organisms respond to the habitat around them in many different ways, one way is by changing its gene expression to one that is most suitable for their surroundings. More often than not, this has a direct correlation to phenotypic plasticity. Phenotypic plasticity is when a species develops new physical features in response to the environment they’re in. Passing down epigenetics that are in relation to mitotic cell divisions allows for the belief of a possibility that this is also passed down from parents to offspring. Parents could be responsible for the development of new phenotypes in these cases. [36]

Epigenetic inheritance

Epigenetic inheritance refers to passing down or transferring epigenetic information between the parent and offspring. Some believe that these occurrences can be passed down for many generations. For example, the language a given species utilizes develops a specific phenotype that will be passed down from generation to generation. [36]

Cultural inheritance

Cultural inheritance is a behavioral factor that is passed down from generation to generation, similar to inheritance. For example, in rats, mothers that lick and groom their pups pass down a specific behavior to their offspring causing them to do the same to the subsequent generation. Epigenetic inheritance is involved in this, but they are separate things that work together. [36]

Mechanisms influencing epigenetics

DNA replication

DNA Replication 0323 DNA Replication.jpg
DNA Replication

DNA replication is a highly conserved process involving the copying of genetic information from parent one generation to the next. Within this complex process, chromatin disassembles and reassembles in a precise and regulated manner in order to compact large amounts of genetic material into the nucleus, while also maintaining the integrity of epigenetic information carried by histone proteins bound to DNA in the process of cell division. Half of the histones present during replication are from chromatin found in the parent DNA and thus carry the parent's epigenetic information. [37] These epigenetic marks play a critical role in determining chromatin structure and thus gene expression in the newly synthesized DNA. The other half of the histones present in replication are newly synthesized.

DNA methylation

Epigenetic mechanisms-DNA methylation and acetylation Epigenetic mechanisms.jpg
Epigenetic mechanisms-DNA methylation and acetylation

A major formative mechanism of epigenetic modification is DNA methylation. DNA methylation is the process of adding a methyl group to a cytosine base in the DNA strand, via covalent bond. This process is carried out by specific enzymes. [38] These methyl additions can be reversed in a process known as demethylation. The presence or absence of methyl groups can attract proteins involved in gene repression, or inhibit the binding of certain transcription factors, thus preventing methylated genes from being transcribed, ultimately affecting phenotypic expression. [39]

Acetylation

Acetylation is a reaction that introduces an acetyl group into an organic chemical compound, typically by substituting an acetyl group for a hydrogen atom. Deacetylation is the removal of an acetyl group from an organic chemical compound. Histone acetylation and deacetylation affect the three-dimensional structure of chromatin. A more relaxed chromatin structure leads to greater rates of genetic transcription, whereas a tighter structure inhibits transcription.

Transcriptional regulation

Regulation of transcription in mammals Regulation of transcription in mammals.jpg
Regulation of transcription in mammals

Transcriptional regulation is a complex process involving the binding of transcriptional machinery to regulatory proteins—specifically chromatin remodeling or modifying proteins-directly onto a specific target. This may sometimes be facilitated by the contribution of accessory complexes that function primarily to repress and activate transcription in a cell. Transcriptional regulation additionally focuses on the epigenetic regulation of a target locus, as the epigenetic status of the locus determines either the facilitation of or prohibition of transcription. Epigenetic regulation is necessary for the precise deployment of transcriptional programs. [40]

Related Research Articles

<span class="mw-page-title-main">Epigenetics</span> Study of DNA modifications that do not change its sequence

In biology, epigenetics is the study of heritable traits, or a stable change of cell function, that happen without changes to the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic mechanism of inheritance. Epigenetics usually involves a change that is not erased by cell division, and affects the regulation of gene expression. Such effects on cellular and physiological phenotypic traits may result from environmental factors, or be part of normal development. Epigenetic factors can also lead to cancer.

<span class="mw-page-title-main">Euchromatin</span> Lightly packed form of chromatin that is enriched in genes

Euchromatin is a lightly packed form of chromatin that is enriched in genes, and is often under active transcription. Euchromatin stands in contrast to heterochromatin, which is tightly packed and less accessible for transcription. 92% of the human genome is euchromatic.

A maternal effect is a situation where the phenotype of an organism is determined not only by the environment it experiences and its genotype, but also by the environment and genotype of its mother. In genetics, maternal effects occur when an organism shows the phenotype expected from the genotype of the mother, irrespective of its own genotype, often due to the mother supplying messenger RNA or proteins to the egg. Maternal effects can also be caused by the maternal environment independent of genotype, sometimes controlling the size, sex, or behaviour of the offspring. These adaptive maternal effects lead to phenotypes of offspring that increase their fitness. Further, it introduces the concept of phenotypic plasticity, an important evolutionary concept. It has been proposed that maternal effects are important for the evolution of adaptive responses to environmental heterogeneity.

<span class="mw-page-title-main">Epigenome</span> Biological term

In biology, the epigenome of an organism is the collection of chemical changes to its DNA and histone proteins that affects when, where, and how the DNA is expressed; these changes can be passed down to an organism's offspring via transgenerational epigenetic inheritance. Changes to the epigenome can result in changes to the structure of chromatin and changes to the function of the genome. The human epigenome, including DNA methylation and histone modification, is maintained through cell division. The epigenome is essential for normal development and cellular differentiation, enabling cells with the same genetic code to perform different functions. The human epigenome is dynamic and can be influenced by environmental factors such as diet, stress, and toxins.

Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. The field is analogous to genomics and proteomics, which are the study of the genome and proteome of a cell. Epigenetic modifications are reversible modifications on a cell's DNA or histones that affect gene expression without altering the DNA sequence. Epigenomic maintenance is a continuous process and plays an important role in stability of eukaryotic genomes by taking part in crucial biological mechanisms like DNA repair. Plant flavones are said to be inhibiting epigenomic marks that cause cancers. Two of the most characterized epigenetic modifications are DNA methylation and histone modification. Epigenetic modifications play an important role in gene expression and regulation, and are involved in numerous cellular processes such as in differentiation/development and tumorigenesis. The study of epigenetics on a global level has been made possible only recently through the adaptation of genomic high-throughput assays.

<span class="mw-page-title-main">Transgenerational epigenetic inheritance</span> Epigenetic transmission without DNA primary structure alteration

Transgenerational epigenetic inheritance is the transmission of epigenetic markers and modifications from one generation to multiple subsequent generations without altering the primary structure of DNA. Thus, the regulation of genes via epigenetic mechanisms can be heritable; the amount of transcripts and proteins produced can be altered by inherited epigenetic changes. In order for epigenetic marks to be heritable, however, they must occur in the gametes in animals, but since plants lack a definitive germline and can propagate, epigenetic marks in any tissue can be heritable.

Behavioral epigenetics is the field of study examining the role of epigenetics in shaping animal and human behavior. It seeks to explain how nurture shapes nature, where nature refers to biological heredity and nurture refers to virtually everything that occurs during the life-span. Behavioral epigenetics attempts to provide a framework for understanding how the expression of genes is influenced by experiences and the environment to produce individual differences in behaviour, cognition, personality, and mental health.

The epigenetics of schizophrenia is the study of how inherited epigenetic changes are regulated and modified by the environment and external factors and how these changes influence the onset and development of, and vulnerability to, schizophrenia. Epigenetics concerns the heritability of those changes, too. Schizophrenia is a debilitating and often misunderstood disorder that affects up to 1% of the world's population. Although schizophrenia is a heavily studied disorder, it has remained largely impervious to scientific understanding; epigenetics offers a new avenue for research, understanding, and treatment.

Epigenetic regulation of neurogenesis is the role that epigenetics plays in the regulation of neurogenesis.

<span class="mw-page-title-main">Epigenetic therapy</span> Use of epigenome-influencing techniques to treat medical conditions

Epigenetic therapy refers to the use of drugs or other interventions to modify gene expression patterns, potentially treating diseases by targeting epigenetic mechanisms such as DNA methylation and histone modifications.

Epigenetics is the study of changes in gene expression that occur via mechanisms such as DNA methylation, histone acetylation, and microRNA modification. When these epigenetic changes are heritable, they can influence evolution. Current research indicates that epigenetics has influenced evolution in a number of organisms, including plants and animals.

The epigenetics of plant growth and development refers to the heritable changes in gene expression that occur without alterations to the DNA sequence, influencing processes in plants such as seed germination, flowering, and stress responses through mechanisms like DNA methylation, histone modification, and chromatin remodeling.

Neuroepigenetics is the study of how epigenetic changes to genes affect the nervous system. These changes may effect underlying conditions such as addiction, cognition, and neurological development.

H3K27me3 is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the tri-methylation of lysine 27 on histone H3 protein.

Pharmacoepigenetics is an emerging field that studies the underlying epigenetic marking patterns that lead to variation in an individual's response to medical treatment.

Epigenetics of anxiety and stress–related disorders is the field studying the relationship between epigenetic modifications of genes and anxiety and stress-related disorders, including mental health disorders such as generalized anxiety disorder (GAD), post-traumatic stress disorder, obsessive-compulsive disorder (OCD), and more. These changes can lead to transgenerational stress inheritance.

<span class="mw-page-title-main">Epigenetic priming</span> Type of modification to a cells epigenome

Epigenetic priming is the modification to a cell's epigenome whereby specific chromatin domains within a cell are converted from a closed state to an open state, usually as the result of an external biological trigger or pathway, allowing for DNA access by transcription factors or other modification mechanisms. The action of epigenetic priming for a certain region of DNA dictates how other gene regulation mechanisms will be able to act on the DNA later in the cell’s life. Epigenetic priming has been chiefly investigated in neuroscience and cancer research, as it has been found to play a key role in memory formation within neurons and tumor-suppressor gene activation in cancer treatment respectively.

Transgenerational epigenetic inheritance in plants involves mechanisms for the passing of epigenetic marks from parent to offspring that differ from those reported in animals. There are several kinds of epigenetic markers, but they all provide a mechanism to facilitate greater phenotypic plasticity by influencing the expression of genes without altering the DNA code. These modifications represent responses to environmental input and are reversible changes to gene expression patterns that can be passed down through generations. In plants, transgenerational epigenetic inheritance could potentially represent an evolutionary adaptation for sessile organisms to quickly adapt to their changing environment.

Sleep epigenetics is the field of how epigenetics affects sleep.

Nutritional epigenetics is a science that studies the effects of nutrition on gene expression and chromatin accessibility. It is a subcategory of nutritional genomics that focuses on the effects of bioactive food components on epigenetic events.

References

  1. Rosenfeld CS (March 2010). "Animal models to study environmental epigenetics". Biology of Reproduction. 82 (3): 473–488. doi: 10.1095/biolreprod.109.080952 . PMID   19828779. S2CID   35334680.
  2. 1 2 McCaw BA, Stevenson TJ, Lancaster LT (December 2020). "Epigenetic Responses to Temperature and Climate". Integrative and Comparative Biology. 60 (6): 1469–1480. doi:10.1093/icb/icaa049. hdl: 2164/16571 . PMID   32470117.
  3. Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK (2012). "Environmental epigenetics and its implication on disease risk and health outcomes". ILAR Journal. 53 (3–4): 289–305. doi:10.1093/ilar.53.3-4.289. PMC   4021822 . PMID   23744968.
  4. 1 2 Simmons D (2008). "Epigenetic Influences and Disease | Learn Science at Scitable". Nature Education. 1 (1): 6. Retrieved 2023-04-07.
  5. Feil R, Fraga MF (January 2012). "Epigenetics and the environment: emerging patterns and implications". Nature Reviews. Genetics. 13 (2): 97–109. doi:10.1038/nrg3142. PMID   22215131. S2CID   21879458.
  6. LeBaron MJ, Rasoulpour RJ, Klapacz J, Ellis-Hutchings RG, Hollnagel HM, Gollapudi BB (October 2010). "Epigenetics and chemical safety assessment". Mutation Research. 705 (2): 83–95. Bibcode:2010MRRMR.705...83L. doi:10.1016/j.mrrev.2010.04.003. PMID   20399890.
  7. Barua S, Junaid MA (February 1, 2015). "Lifestyle, pregnancy and epigenetic effects". Epigenomics. 7 (1): 85–102. doi:10.2217/epi.14.71. PMID   25687469.
  8. Hiyama A, Taira W, Otaki JM (2012). "Color-pattern evolution in response to environmental stress in butterflies". Frontiers in Genetics. 3: 15. doi: 10.3389/fgene.2012.00015 . PMC   3277265 . PMID   22363341.
  9. Kaushik P, Anderson JT (June 2016). "Obesity: epigenetic aspects". Biomolecular Concepts. 7 (3): 145–155. doi: 10.1515/bmc-2016-0010 . PMID   27327133. S2CID   207442175.
  10. Marsit CJ (January 2015). "Influence of environmental exposure on human epigenetic regulation". The Journal of Experimental Biology. 218 (Pt 1): 71–79. doi:10.1242/jeb.106971. PMC   4286705 . PMID   25568453.
  11. 1 2 3 4 5 Toraño EG, García MG, Fernández-Morera JL, Niño-García P, Fernández AF (2016). "The Impact of External Factors on the Epigenome: In Utero and over Lifetime". BioMed Research International. 2016: 2568635. doi: 10.1155/2016/2568635 . PMC   4887632 . PMID   27294112.
  12. Hou L, Zhang X, Wang D, Baccarelli A (February 2012). "Environmental chemical exposures and human epigenetics". International Journal of Epidemiology. 41 (1): 79–105. doi:10.1093/ije/dyr154. PMC   3304523 . PMID   22253299.
  13. Jaenisch R, Bird A (March 2003). "Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals". Nature Genetics. 33 (S3): 245–254. doi:10.1038/ng1089. PMID   12610534.
  14. Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LE, Sheldon BC (May 2008). "Adaptive phenotypic plasticity in response to climate change in a wild bird population". Science. 320 (5877): 800–803. Bibcode:2008Sci...320..800C. doi:10.1126/science.1157174. PMID   18467590.
  15. "Individual Variation of Body Weight In Plant and Animal Populations", Population Ecology of Individuals. (MPB-25), Volume 25, Princeton University Press, pp. 46–64, 2020-03-31, doi:10.2307/j.ctvx5wbhx.6 , retrieved 2024-04-11
  16. Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (June 2011). "Beyond DNA: integrating inclusive inheritance into an extended theory of evolution". Nature Reviews. Genetics. 12 (7): 475–486. doi:10.1038/nrg3028. PMID   21681209.
  17. Feinberg AP, Irizarry RA (January 2010). "Evolution in health and medicine Sackler colloquium: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease". Proceedings of the National Academy of Sciences of the United States of America. 107 (Suppl 1): 1757–1764. Bibcode:2010PNAS..107.1757F. doi: 10.1073/pnas.0906183107 . PMC   2868296 . PMID   20080672.
  18. Herman JJ, Sultan SE (September 2016). "DNA methylation mediates genetic variation for adaptive transgenerational plasticity". Proceedings. Biological Sciences. 283 (1838): 20160988. doi:10.1098/rspb.2016.0988. PMC   5031651 . PMID   27629032.
  19. Beal AP, Hackerott S, Franks B, Gruber SH, Feldheim K, Eirin-Lopez JM (August 2021). "Epigenetic responses in juvenile Lemon sharks (Negaprion brevirostris) during a coastal dredging episode in Bimini, Bahamas". Ecological Indicators. 127: 107793. Bibcode:2021EcInd.12707793P. doi: 10.1016/j.ecolind.2021.107793 .
  20. Godbold DL, Hüttermann A (1986). "The uptake and toxicity of mercury and lead to spruce (picea abifs karst.seedlings". Water, Air, & Soil Pollution. 31 (1–2): 509–515. Bibcode:1986WASP...31..509G. doi:10.1007/bf00630869.
  21. Wu SH (May 1994). "Effect of manganese excess on the soybean plant cultivated under various growth conditions". Journal of Plant Nutrition. 17 (6): 991–1003. Bibcode:1994JPlaN..17..991W. doi:10.1080/01904169409364783.
  22. Horiguchi T (March 1988). "Mechanism of manganese toxicity and tolerance of plants: IV. Effects of silicon on alleviation of manganese toxicity of rice plants". Soil Science and Plant Nutrition. 34 (1): 65–73. doi:10.1080/00380768.1988.10415580.
  23. Bachman GR, Miller WB (September 1995). "Iron chelate inducible iron/manganese toxicity in zonal geranium". Journal of Plant Nutrition. 18 (9): 1917–1929. Bibcode:1995JPlaN..18.1917B. doi:10.1080/01904169509365033.
  24. "Reduction of drought effect on peroxidase, catalase, chlorophyll content and yield of broad bean (Vicia faba L.) by proline and salicylic acid treatments". Advances in Environmental Biology. 2019. doi: 10.22587/aeb.2018.12.12.5 .
  25. Asrar Z, Khavari-Nejad RA, Heidari H (February 2005). "Excess manganese effects on pigments of Mentha spicata at flowering stage". Archives of Agronomy and Soil Science. 51 (1): 101–107. Bibcode:2005ArASS..51..101A. doi:10.1080/03650340400026602.
  26. Doncheva S, Georgieva K, Vassileva V, Stoyanova Z, Popov N, Ignatov G (January 2005). "Effects of Succinate on Manganese Toxicity in Pea Plants". Journal of Plant Nutrition. 28 (1): 47–62. Bibcode:2005JPlaN..28...47D. doi:10.1081/pln-200042161.
  27. Shenker M, Plessner OE, Tel-Or E (February 2004). "Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity". Journal of Plant Physiology. 161 (2): 197–202. Bibcode:2004JPPhy.161..197S. doi:10.1078/0176-1617-00931. PMID   15022834.
  28. Asati A, Pichhode M, Nikhil K (2016). "Effect of Heavy Metals on Plants: An Overview". International Journal of Application or Innovation in Engineering & Management. 5 (3): 56–66. doi:10.13140/RG.2.2.27583.87204.
  29. 1 2 3 Guo X, Chen X, Wang J, Liu Z, Gaile D, Wu H, et al. (October 2018). "Multi-generational impacts of arsenic exposure on genome-wide DNA methylation and the implications for arsenic-induced skin lesions". Environment International. 119: 250–263. Bibcode:2018EnInt.119..250G. doi:10.1016/j.envint.2018.06.024. PMC   6143427 . PMID   29982128.
  30. Acharjee S, Chauhan S, Pal R, Tomar RS (2023). "Mechanisms of DNA methylation and histone modifications". Progress in Molecular Biology and Translational Science. 197: 51–92. doi:10.1016/bs.pmbts.2023.01.001. ISBN   978-0-443-18669-1. PMID   37019597.
  31. 1 2 Stepanyan A, Petrackova A, Hakobyan S, Savara J, Davitavyan S, Kriegova E, et al. (August 2023). "Long-term environmental metal exposure is associated with hypomethylation of CpG sites in NFKB1 and other genes related to oncogenesis". Clinical Epigenetics. 15 (1): 126. doi: 10.1186/s13148-023-01536-3 . PMC   10405444 . PMID   37550793.
  32. "IGF2 gene". MedlinePlus Genetics. Retrieved 2024-03-24.
  33. 1 2 Bergman D, Halje M, Nordin M, Engström W (2013). "Insulin-like growth factor 2 in development and disease: a mini-review". Gerontology. 59 (3): 240–249. doi:10.1159/000343995. PMID   23257688.
  34. Sélénou C, Brioude F, Giabicani E, Sobrier ML, Netchine I (June 2022). "IGF2: Development, Genetic and Epigenetic Abnormalities". Cells. 11 (12): 1886. doi: 10.3390/cells11121886 . PMC   9221339 . PMID   35741015.
  35. Boyadjieva N, Varadinova M (October 2012). "Epigenetics of psychoactive drugs". The Journal of Pharmacy and Pharmacology. 64 (10): 1349–58. doi: 10.1111/j.2042-7158.2012.01475.x . PMID   22943166. S2CID   206003704.
  36. 1 2 3 Ashe A, Colot V, Oldroyd BP (June 2021). "How does epigenetics influence the course of evolution?". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 376 (1826): 20200111. doi:10.1098/rstb.2020.0111. PMC   8059608 . PMID   33866814.
  37. Budhavarapu VN, Chavez M, Tyler JK (October 2013). "How is epigenetic information maintained through DNA replication?". Epigenetics & Chromatin. 6 (1): 32. doi: 10.1186/1756-8935-6-32 . PMC   3852060 . PMID   24225278.
  38. Miller RL, Ho SM (March 2008). "Environmental epigenetics and asthma: current concepts and call for studies". American Journal of Respiratory and Critical Care Medicine. 177 (6): 567–573. doi:10.1164/rccm.200710-1511pp. PMC   2267336 . PMID   18187692.
  39. Moore LD, Le T, Fan G (January 2013). "DNA methylation and its basic function". Neuropsychopharmacology. 38 (1): 23–38. doi:10.1038/npp.2012.112. PMC   3521964 . PMID   22781841. S2CID   9793643.
  40. Patmanidi AL, Champeris Tsaniras S, Karamitros D, Kyrousi C, Lygerou Z, Taraviras S (February 2017). "Concise Review: Geminin-A Tale of Two Tails: DNA Replication and Transcriptional/Epigenetic Regulation in Stem Cells". Stem Cells. 35 (2): 299–310. doi: 10.1002/stem.2529 . PMID   27859962. S2CID   4487813.