Erythropoietic porphyria | |
---|---|
Specialty | Dermatology |
Erythropoietic porphyria is a type of porphyria associated with erythropoietic cells. In erythropoietic porphyrias, the enzyme deficiency occurs in the red blood cells. [1]
There are three types: [2]
Name | OMIM | Gene |
---|---|---|
erythropoietic protoporphyria (EPP) | 177000 | ferrochelatase |
congenital erythropoietic porphyria or "Gunther's" (CEP) [3] : 526 | 263700 | uroporphyrinogen III synthase |
hepatoerythropoietic porphyria | 176100 | uroporphyrinogen III decarboxylase |
X-linked dominant erythropoietic protoporphyria is a relatively mild version of porphyria with the predominant symptom being extreme photosensitivity causing severe itching and burning sensation of the skin due to the buildup of protoporphyrin IX. One possible treatment was discovered when treating an individual with supplemental iron for a gastric ulcer. Levels of free protoporphyrin decreased significantly as there was iron available for the FECH to produce heme. Levels of zinc-protoporphyrin, however did not decrease. [4] [5]
X-linked sideroblastic anemia or "X-linked dominant erythropoietic protoporphyria", associated with ALAS2 (aminolevulinic acid synthase), has also been described. X-linked dominant erythropoietic protoporphyria (XDEPP) is caused by a gain of function mutation in the ALAS2 (5-aminolevulinate synthase) gene; that gene encodes the very first enzyme in the heme biosynthetic pathway. The mutation is caused by a frameshift mutation caused by one of two deletions in the ALAS2 exon 11, either c. 1706-1709 delAGTG or c. 1699-1700 delAT. This alters the 19th and 20th residues of the C-terminal domain thereby altering the secondary structure of the enzyme. The delAT mutation only occurred in one family studied whereas the delAGTG mutation occurred in several genetically distinct families. The delAGTG causes a loss of an α-helix which is replaced by a β-sheet.
Previously known mutations in the ALAS2 resulted in a loss-of-function mutation causing X-linked sideroblastic anemia. Erythropoietic protoporphyria (EPP) has similar symptoms as X-linked dominant erythropoietic protoporphyria but the mutation occurs as a loss-of-function in the FECH (ferrochelatase) enzyme; the very last enzyme in the pathway. All individuals studied presented symptoms without mutations in the FECH enzyme. The patterns of inheritance led the researchers to conclude the mutation must come from an enzyme on the X-chromosome with ALAS2 being the most likely candidate.
X-linked dominant erythropoietic protoporphyria is distinct from EPP in that there is no overload of Fe2+ ions. Additionally, unlike the other condition the arises out of a mutation of the ALAS2 gene, there is no anaemia. XDEPP is characterized by a buildup of protoporphyrin IX caused by in increased level of function in the ALAS2 enzyme. Because there is a buildup of protoporphyrin IX with no malfunction of the FECH enzyme, all the available Fe2+ is used in the production of heme, causing the FECH enzyme to use Zn2+ in its place, causing a buildup of zinc-protoporphyrin IX.
The diagnosis is confirmed by finding increased red blood cell and plasma protoporphyrin levels. The peak plasma fluorescence occurs at 634 nm, following excitation at 410 nm.[ citation needed ]
Porphyria is a group of disorders in which substances called porphyrins build up in the body, adversely affecting the skin or nervous system. The types that affect the nervous system are also known as acute porphyria, as symptoms are rapid in onset and short in duration. Symptoms of an attack include abdominal pain, chest pain, vomiting, confusion, constipation, fever, high blood pressure, and high heart rate. The attacks usually last for days to weeks. Complications may include paralysis, low blood sodium levels, and seizures. Attacks may be triggered by alcohol, smoking, hormonal changes, fasting, stress, or certain medications. If the skin is affected, blisters or itching may occur with sunlight exposure.
Heme, or haem, is a ring-shaped iron-containing molecular component of hemoglobin, which is necessary to bind oxygen in the bloodstream. It is composed of four pyrrole rings with 2 vinyl and 2 propionic acid side chains. Heme is biosynthesized in both the bone marrow and the liver.
Hereditary coproporphyria (HCP) is a disorder of heme biosynthesis, classified as an acute hepatic porphyria. HCP is caused by a deficiency of the enzyme coproporphyrinogen oxidase, coded for by the CPOX gene, and is inherited in an autosomal dominant fashion, although homozygous individuals have been identified. Unlike acute intermittent porphyria, individuals with HCP can present with cutaneous findings similar to those found in porphyria cutanea tarda in addition to the acute attacks of abdominal pain, vomiting and neurological dysfunction characteristic of acute porphyrias. Like other porphyrias, attacks of HCP can be induced by certain drugs, environmental stressors or diet changes. Biochemical and molecular testing can be used to narrow down the diagnosis of a porphyria and identify the specific genetic defect. Overall, porphyrias are rare diseases. The combined incidence for all forms of the disease has been estimated at 1:20,000. The exact incidence of HCP is difficult to determine, due to its reduced penetrance.
Variegate porphyria, also known by several other names, is an autosomal dominant porphyria that can have acute symptoms along with symptoms that affect the skin. The disorder results from low levels of the enzyme responsible for the seventh step in heme production. Heme is a vital molecule for all of the body's organs. It is a component of hemoglobin, the molecule that carries oxygen in the blood.
Porphyria cutanea tarda is the most common subtype of porphyria. The disease is named because it is a porphyria that often presents with skin manifestations later in life. The disorder results from low levels of the enzyme responsible for the fifth step in heme production. Heme is a vital molecule for all of the body's organs. It is a component of hemoglobin, the molecule that carries oxygen in the blood.
Erythropoietic protoporphyria is a form of porphyria, which varies in severity and can be very painful. It arises from a deficiency in the enzyme ferrochelatase, leading to abnormally high levels of protoporphyrin in the red blood cells (erythrocytes), plasma, skin, and liver. The severity varies significantly from individual to individual.
Aminolevulinic acid synthase (ALA synthase, ALAS, or delta-aminolevulinic acid synthase) is an enzyme (EC 2.3.1.37) that catalyzes the synthesis of δ-aminolevulinic acid (ALA) the first common precursor in the biosynthesis of all tetrapyrroles such as hemes, cobalamins and chlorophylls. The reaction is as follows:
Gunther disease is a congenital form of erythropoietic porphyria. The word porphyria originated from the Greek word porphura. Porphura actually means "purple pigment", which, in suggestion, the color that the body fluid changes when a person has Gunther's disease. It is a rare, autosomal recessive metabolic disorder affecting heme, caused by deficiency of the enzyme uroporphyrinogen cosynthetase. It is extremely rare, with a prevalence estimated at 1 in 1,000,000 or less. There have been times that prior to birth of a fetus, Gunther's disease has been shown to lead to anemia. In milder cases patients have not presented any symptoms until they have reached adulthood. In Gunther's disease, porphyrins are accumulated in the teeth and bones and an increased amount are seen in the plasma, bone marrow, feces, red blood cells, and urine.
Hemoglobin A (HbA), also known as adult hemoglobin, hemoglobin A1 or α2β2, is the most common human hemoglobin tetramer, accounting for over 97% of the total red blood cell hemoglobin. Hemoglobin is an oxygen-binding protein, found in erythrocytes, which transports oxygen from the lungs to the tissues. Hemoglobin A is the most common adult form of hemoglobin and exists as a tetramer containing two alpha subunits and two beta subunits (α2β2). Hemoglobin A2 (HbA2) is a less common adult form of hemoglobin and is composed of two alpha and two delta-globin subunits. This hemoglobin makes up 1-3% of hemoglobin in adults.
Sideroblastic anemia, or sideroachrestic anemia, is a form of anemia in which the bone marrow produces ringed sideroblasts rather than healthy red blood cells (erythrocytes). In sideroblastic anemia, the body has iron available but cannot incorporate it into hemoglobin, which red blood cells need in order to transport oxygen efficiently. The disorder may be caused either by a genetic disorder or indirectly as part of myelodysplastic syndrome, which can develop into hematological malignancies.
Acute intermittent porphyria (AIP) is a rare metabolic disorder affecting the production of heme resulting from a deficiency of the enzyme porphobilinogen deaminase. It is the most common of the acute porphyrias.
Protoporphyrinogen oxidase or protox is an enzyme that in humans is encoded by the PPOX gene.
Protoporphyrin ferrochelatase (EC 4.98.1.1, formerly EC 4.99.1.1, or ferrochelatase; systematic name protoheme ferro-lyase (protoporphyrin-forming)) is an enzyme encoded by the FECH gene in humans. Ferrochelatase catalyses the eighth and terminal step in the biosynthesis of heme, converting protoporphyrin IX into heme B. It catalyses the reaction:
Cystathionine-β-synthase, also known as CBS, is an enzyme (EC 4.2.1.22) that in humans is encoded by the CBS gene. It catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine:
Mitoferrin-1 (Mfrn1) is a 38 kDa protein that is encoded by the SLC25A37 gene in humans. It is a member of the Mitochondrial carrier (MC) Superfamily, however, its metal cargo makes it distinct from other members of this family. Mfrn1 plays a key role in mitochondrial iron homeostasis as an iron transporter, importing ferrous iron from the intermembrane space of the mitochondria to the mitochondrial matrix for the biosynthesis of heme groups and Fe-S clusters. This process is tightly regulated, given the redox potential of Mitoferrin's iron cargo. Mfrn1 is paralogous to Mitoferrin-2 (Mfrn2), a 39 kDa protein encoded by the SLC25A28 gene in humans. Mfrn1 is highly expressed in differentiating erythroid cells and in other tissues at low levels, while Mfrn2 is expressed ubiquitously in non-erythroid tissues.
tRNA pseudouridine synthase A is an enzyme that in humans is encoded by the PUS1 gene.
Zinc protoporphyrin (ZPP) refers to coordination complexes of zinc and protoporphyrin IX. It is a red-purple solid that is soluble in water. The complex and related species are found in red blood cells when heme production is inhibited by lead and/or by lack of iron.
Delta-aminolevulinate synthase 2 also known as ALAS2 is a protein that in humans is encoded by the ALAS2 gene. ALAS2 is an aminolevulinic acid synthase.
Delta-aminolevulinate synthase 1 also known as ALAS1 is a protein that in humans is encoded by the ALAS1 gene. ALAS1 is an aminolevulinic acid synthase.
Harderoporphyria is a rare disorder of heme biosynthesis, inherited in an autosomal recessive manner caused by specific mutations in the CPOX gene. Mutations in CPOX usually cause hereditary coproporphyria, an acute hepatic porphyria, however the K404E mutation in a homozygous or compound heterozygous state with a null allele cause the more severe harderoporphyria. Harderoporphyria is the first known metabolic disorder where the disease phenotype depended on the type and location of the mutations in a gene associated with multiple disorders.