Ethyl methacrylate

Last updated
Ethyl methacrylate
Ethyl methacrylate 200.svg
Names
Preferred IUPAC name
Ethyl 2-methylprop-2-enoate
Other names
Ethyl 2-methylpropenoate, Acryester E, Acryester BMA
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.002.362 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-597-5
PubChem CID
RTECS number
  • OZ4550000
UNII
UN number 2277
  • InChI=1S/C6H10O2/c1-4-8-6(7)5(2)3/h2,4H2,1,3H3
    Key: SUPCQIBBMFXVTL-UHFFFAOYSA-N
  • CCOC(=O)C(=C)C
Properties
C6H10O2
Molar mass 114.144 g·mol−1
Appearancecolorless liquid
Density 0.9135 g/cm3
Boiling point 117 °C (243 °F; 390 K)
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
Warning
H225, H315, H317, H319, H335
P210, P233, P240, P241, P242, P243, P261, P264, P271, P272, P280, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P312, P321, P332+P313, P333+P313, P337+P313, P362, P363, P370+P378, P403+P233, P403+P235, P405, P501
NFPA 704 (fire diamond)
2
3
2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ethyl methacrylate is the organic compound with the formula C2H5O2CC(CH3)=CH2. A colorless liquid, it is a common monomer for the preparation of acrylate polymers. [1] It is typically polymerized under free-radical conditions. [2]

Contents

Ethyl methacrylate was first obtained by treating 2-hydroxyisobutyric acid with phosphorus pentachloride in an apparent dehydration reaction. [3]

Environmental issues and health hazards

The acute toxicity of the related butyl methacrylate is the LD50 is 20 g/kg (oral, rat). Acrylate esters irritate the eyes and can cause blindness. [1]

See also

Related Research Articles

In chemistry, a monomer is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization.

<span class="mw-page-title-main">Acrylate</span> Salt or ester of acrylic acid

Acrylates (IUPAC: prop-2-enoates) are the salts, esters, and conjugate bases of acrylic acid. The acrylate ion is the anion CH2=CHCOO. Often, acrylate refers to esters of acrylic acid, the most common member being methyl acrylate. These acrylates contain vinyl groups. These compounds are of interest because they are bifunctional: the vinyl group is susceptible to polymerization and the carboxylate group carries myriad functionalities. Modified acrylates are also numerous, some examples being methacrylates (CH2=C(CH3)CO2R) and cyanoacrylates (CH2=C(CN)CO2R). Acrylate can also refer to polyacrylates prepared through the polymerization of the vinyl groups of acrylate monomers.

<span class="mw-page-title-main">Acrylic acid</span> Chemical compound

Acrylic acid (IUPAC: propenoic acid) is an organic compound with the formula CH2=CHCOOH. It is the simplest unsaturated carboxylic acid, consisting of a vinyl group connected directly to a carboxylic acid terminus. This colorless liquid has a characteristic acrid or tart smell. It is miscible with water, alcohols, ethers, and chloroform. More than a million tons are produced annually.

<span class="mw-page-title-main">Methyl methacrylate</span> Chemical compound

Methyl methacrylate (MMA) is an organic compound with the formula CH2=C(CH3)COOCH3. This colorless liquid, the methyl ester of methacrylic acid (MAA), is a monomer produced on a large scale for the production of poly(methyl methacrylate) (PMMA).

In polymer chemistry, anionic addition polymerization is a form of chain-growth polymerization or addition polymerization that involves the polymerization of monomers initiated with anions. The type of reaction has many manifestations, but traditionally vinyl monomers are used. Often anionic polymerization involves living polymerizations, which allows control of structure and composition.

<span class="mw-page-title-main">Acrylate polymer</span> Group of polymers prepared from acrylate monomers

An acrylate polymer is any of a group of polymers prepared from acrylate monomers. These plastics are noted for their transparency, resistance to breakage, and elasticity.

<span class="mw-page-title-main">Methacrylic acid</span> Chemical compound

Methacrylic acid, abbreviated MAA, is an organic compound. This colorless, viscous liquid is a carboxylic acid with an acrid unpleasant odor. It is soluble in warm water and miscible with most organic solvents. Methacrylic acid is produced industrially on a large scale as a precursor to its esters, especially methyl methacrylate (MMA), and to poly(methyl methacrylate) (PMMA). MAA occurs naturally in small amounts in the oil of Roman chamomile.

<span class="mw-page-title-main">Acrylic resin</span> Thermoplastic or thermosetting plastic

An acrylic resin is a thermoplastic or thermosetting plastic substance typically derived from acrylic acid, methacrylic acid and acrylate monomers such as butyl acrylate and or methacrylate monomers such as methyl methacrylate. Thermoplastic acrylics designate a group of acrylic resins typically containing both a high molecular weight and a high glass transition temperature which exhibit lacquer dry capability. Acrylic resins designed for use in two component systems for crosslinking with isocyanate are referred to as polyols and are made with the monomers previously mentioned as well as hydroxy monomers such as hydroxy ethyl methacrylate. Acrylic resins are produced in different liquid carriers such as a hydrocarbon solvent or water in which case they are referred to as emulsions or dispersions and they are also provided in 100% solids bead form.

<span class="mw-page-title-main">Ethyl acrylate</span> Chemical compound

Ethyl acrylate is an organic compound with the formula CH2CHCO2CH2CH3. It is the ethyl ester of acrylic acid. It is a colourless liquid with a characteristic acrid odor. It is mainly produced for paints, textiles, and non-woven fibers. It is also a reagent in the synthesis of various pharmaceutical intermediates.

<span class="mw-page-title-main">(Hydroxyethyl)methacrylate</span> Chemical compound

Hydroxyethylmethacrylate is the organic compound with the chemical formula H2C\dC(CH3)CO2CH2CH2OH. It is a colorless viscous liquid that readily polymerizes. Hydroxyethylmethacrylate is a monomer that is used to make various polymers.

Solution polymerization is a method of industrial polymerization. In this procedure, a monomer is dissolved in a non-reactive solvent that contains a catalyst or initiator.

<span class="mw-page-title-main">Methyl acrylate</span> Chemical compound

Methyl acrylate is an organic compound, more accurately the methyl ester of acrylic acid. It is a colourless liquid with a characteristic acrid odor. It is mainly produced to make acrylate fiber, which is used to weave synthetic carpets. It is also a reagent in the synthesis of various pharmaceutical intermediates.

<span class="mw-page-title-main">Glycidyl methacrylate</span> Chemical compound

Glycidyl methacrylate (GMA) is an ester of methacrylic acid and glycidol. Containing both an epoxide and an acrylate groups, the molecule is bifunctional. It is a common monomer used in the production of epoxy resins. While typical home epoxies contain diglycidyl ether of bisphenol A (DGEBA), glycidyl methacrylate is instead used to provide epoxy functionalization to polyolefins and other acrylate resins. Glycidyl methacrylate is produced by several companies worldwide, including Dow Chemical. It is used to prepare a range of composites.

Catalytic chain transfer (CCT) is a process that can be incorporated into radical polymerization to obtain greater control over the resulting products.

<span class="mw-page-title-main">Poly(methacrylic acid)</span> Chemical compound

Poly(methacrylic acid) (PMAA) is a polymer made from methacrylic acid, which is a carboxylic acid. It is often available as its sodium salt, poly(methacrylic acid) sodium salt. The monomer is a viscous liquid with a pungent odour. The first polymeric form of methacrylic acid was described in 1880 by Engelhorn and Fittig. The use of high purity monomers is required for proper polymerization conditions and therefore it is necessary to remove any inhibitors by extraction or via distillation. To prevent inhibition by dissolved oxygen, monomers should be carefully degassed prior to the start of the polymerization.

Butyl acrylate is an organic compound with the formula C4H9O2CCH=CH2. A colorless liquid, it is the butyl ester of acrylic acid. It is used commercially on a large scale as a precursor to polybutylacrylate, which is used in paints, sealants, coatings, adhesives, fuel, textiles, plastics, and caulk.

Functionalized polyolefins are olefin polymers with polar and nonpolar functionalities attached onto the polymer backbone. There has been an increased interest in functionalizing polyolefins due to their increased usage in everyday life. Polyolefins are virtually ubiquitous in everyday life, from consumer food packaging to biomedical applications; therefore, efforts must be made to study catalytic pathways towards the attachment of various functional groups onto polyolefins in order to affect the material's physical properties.

Dimethylaminoethyl acrylate or DMAEA is an unsaturated carboxylic acid ester having a tertiary amino group. It is a colorless to yellowish, water-miscible liquid with a pungent, amine-like odor. DMAEA is an important acrylic monomer that gives basic properties to copolymers.

<span class="mw-page-title-main">Butyl methacrylate</span> Chemical compound

Butyl methacrylate is the organic compound with the formula C4H9O2CC(CH3)=CH2. A colorless liquid, it is a common monomer for the preparation of methacrylate polymers. It is typically polymerized under free-radical conditions.

<span class="mw-page-title-main">2-Hydroxyisobutyric acid</span> Chemical compound

2-Hydroxyisobutyric acid is the organic compound with the formula (CH3)2C(OH)CO2H. A white solid, it is classified as an hydroxycarboxylic acid. It has been considered as a naturally occurring precursor to polyesters. It is closely related to lactic acid.

References

  1. 1 2 Bauer, Jr., William (2002). "Methacrylic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a16_441..
  2. Granel, C.; Dubois, Ph.; Jérôme, R.; Teyssié, Ph. (1996). "Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(II) Complex and Different Activated Alkyl Halides". Macromolecules. 29 (27): 8576–8582. Bibcode:1996MaMol..29.8576G. doi:10.1021/ma9608380.
  3. E. Frankland, B. F. Duppa (1865). "Untersuchungen über Säuren aus der Acrylsäure-Reihe; 1) Umwandlung der Säuren aus der Milchsäure-Reihe in die der Acrylsäure-Reihe". Justus Liebigs Annalen der Chemie. 136: 12. doi:10.1002/jlac.18651360102.