Extensional and intensional definitions

Last updated

In logic, extensional and intensional definitions are two key ways in which the objects, concepts, or referents a term refers to can be defined. They give meaning or denotation to a term.

Contents

Intensional definition

An intensional definition gives meaning to a term by specifying necessary and sufficient conditions for when the term should be used. In the case of nouns, this is equivalent to specifying the properties that an object needs to have in order to be counted as a referent of the term.

For example, an intensional definition of the word "bachelor" is "unmarried man". This definition is valid because being an unmarried man is both a necessary condition and a sufficient condition for being a bachelor: it is necessary because one cannot be a bachelor without being an unmarried man, and it is sufficient because any unmarried man is a bachelor. [1]

This is the opposite approach to the extensional definition, which defines by listing everything that falls under that definition – an extensional definition of bachelor would be a listing of all the unmarried men in the world. [1]

As becomes clear, intensional definitions are best used when something has a clearly defined set of properties, and they work well for terms that have too many referents to list in an extensional definition. It is impossible to give an extensional definition for a term with an infinite set of referents, but an intensional one can often be stated concisely – there are infinitely many even numbers, impossible to list, but the term "even numbers" can be defined easily by saying that even numbers are integer multiples of two.

Definition by genus and difference, in which something is defined by first stating the broad category it belongs to and then distinguished by specific properties, is a type of intensional definition. As the name might suggest, this is the type of definition used in Linnaean taxonomy to categorize living things, but is by no means restricted to biology. Suppose one defines a miniskirt as "a skirt with a hemline above the knee". It has been assigned to a genus, or larger class of items: it is a type of skirt. Then, we've described the differentia, the specific properties that make it its own sub-type: it has a hemline above the knee.

An intensional definition may also consist of rules or sets of axioms that define a set by describing a procedure for generating all of its members. For example, an intensional definition of square number can be "any number that can be expressed as some integer multiplied by itself". The rule—"take an integer and multiply it by itself"—always generates members of the set of square numbers, no matter which integer one chooses, and for any square number, there is an integer that was multiplied by itself to get it.

Similarly, an intensional definition of a game, such as chess, would be the rules of the game; any game played by those rules must be a game of chess, and any game properly called a game of chess must have been played by those rules.

Extensional definition

An extensional definition gives meaning to a term by specifying its extension, that is, every object that falls under the definition of the term in question.

For example, an extensional definition of the term "nation of the world" might be given by listing all of the nations of the world, or by giving some other means of recognizing the members of the corresponding class. An explicit listing of the extension, which is only possible for finite sets and only practical for relatively small sets, is a type of enumerative definition .

Extensional definitions are used when listing examples would give more applicable information than other types of definition, and where listing the members of a set tells the questioner enough about the nature of that set.

An extensional definition possesses similarity to an ostensive definition, in which one or more members of a set (but not necessarily all) are pointed to as examples, but contrasts clearly with an intensional definition, which defines by listing properties that a thing must have in order to be part of the set captured by the definition.

History

The terms "intension" and "extension" were introduced before 1911 by Constance Jones [2] and formalized by Rudolf Carnap. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Definition</span> Statement that attaches a meaning to a term

A definition is a statement of the meaning of a term. Definitions can be classified into two large categories: intensional definitions, and extensional definitions. Another important category of definitions is the class of ostensive definitions, which convey the meaning of a term by pointing out examples. A term may have many different senses and multiple meanings, and thus require multiple definitions.

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

In any of several fields of study that treat the use of signs — for example, in linguistics, logic, mathematics, semantics, semiotics, and philosophy of language — an intension is any property or quality connoted by a word, phrase, or another symbol. In the case of a word, the word's definition often implies an intension. For instance, the intensions of the word plant include properties such as "being composed of cellulose ", "alive", and "organism", among others. A comprehension is the collection of all such intensions.

<span class="mw-page-title-main">Multiplication</span> Arithmetical operation

Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product.

<span class="mw-page-title-main">Set (mathematics)</span> Collection of mathematical objects

A set is the mathematical model for a collection of different things; a set contains elements or members, which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements.

<span class="mw-page-title-main">Integer sequence</span> Ordered list of whole numbers

In mathematics, an integer sequence is a sequence of integers.

A connotation is a commonly understood cultural or emotional association that any given word or phrase carries, in addition to its explicit or literal meaning, which is its denotation.

In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced "A equals B". The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.

In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not a parameter of this or any container expression. Some older books use the terms real variable and apparent variable for free variable and bound variable, respectively. The idea is related to a placeholder, or a wildcard character that stands for an unspecified symbol.

In mathematics and computer science in general, a fixed point of a function is a value that is mapped to itself by the function.

In logic, extensionality, or extensional equality, refers to principles that judge objects to be equal if they have the same external properties. It stands in contrast to the concept of intensionality, which is concerned with whether the internal definitions of objects are the same.

Intuitionistic type theory is a type theory and an alternative foundation of mathematics. Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician and philosopher, who first published it in 1972. There are multiple versions of the type theory: Martin-Löf proposed both intensional and extensional variants of the theory and early impredicative versions, shown to be inconsistent by Girard's paradox, gave way to predicative versions. However, all versions keep the core design of constructive logic using dependent types.

In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that — for some coherent meaning of 'logic' — mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or all of mathematics may be modelled in logic. Bertrand Russell and Alfred North Whitehead championed this programme, initiated by Gottlob Frege and subsequently developed by Richard Dedekind and Giuseppe Peano.

An ostensive definition conveys the meaning of a term by pointing out examples. This type of definition is often used where the term is difficult to define verbally, either because the words will not be understood or because of the nature of the term. It is usually accompanied with a gesture pointing to the object serving as an example, and for this reason is also often referred to as "definition by pointing".

In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic is decidable, whereas first-order and higher-order logic are not. Logical systems are decidable if membership in their set of logically valid formulas can be effectively determined. A theory in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory. Many important problems are undecidable, that is, it has been proven that no effective method for determining membership can exist for them.

<span class="mw-page-title-main">Recursive definition</span> Defining elements of a set in terms of other elements in the set

In mathematics and computer science, a recursive definition, or inductive definition, is used to define the elements in a set in terms of other elements in the set. Some examples of recursively-definable objects include factorials, natural numbers, Fibonacci numbers, and the Cantor ternary set.

Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness".

Contemporary ontologies share many structural similarities, regardless of the ontology language in which they are expressed. Most ontologies describe individuals (instances), classes (concepts), attributes, and relations.

This is an index of Wikipedia articles in philosophy of language

References

  1. 1 2 Cook, Roy T. "Intensional Definition". In A Dictionary of Philosophical Logic. Edinburgh: Edinburgh University Press, 2009. 155.
  2. "Emily Elizabeth Constance Jones: Observations on Intension and Extension". Stanford Encyclopedia of Philosophy. 7 August 2020. Retrieved 19 November 2020.
  3. Fitting, Melvin. "Intensional logic". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy .