Flocking

Last updated
Two flocks of common cranes Grus grus flocks.jpg
Two flocks of common cranes
A swarm-like flock of starlings The flock of starlings acting as a swarm. - geograph.org.uk - 124593.jpg
A swarm-like flock of starlings

Flocking is the behavior exhibited when a group of birds, called a flock, are foraging or in flight. Sheep and goats also exhibit flocking behavior.

Contents

Computer simulations and mathematical models that have been developed to emulate the flocking behaviours of birds can also generally be applied to the "flocking" behaviour of other species. As a result, the term "flocking" is sometimes applied, in computer science, to species other than birds, to mean collective motion by a group of self-propelled entities, a collective animal behaviour exhibited by many living beings such as fish, bacteria, and insects. [1]

Flocking is considered an emergent behaviour arising from simple rules that are followed by individuals and does not involve any central coordination.

In nature

There are parallels with the shoaling behaviour of fish, the swarming behaviour of insects, and herd behaviour of land animals. During the winter months, starlings are known for aggregating into huge flocks of hundreds to thousands of individuals, murmurations, which when they take flight altogether, render large displays of intriguing swirling patterns in the skies above observers.

Flocking behaviour was simulated on a computer in 1987 by Craig Reynolds with his simulation program, Boids. [2] This program simulates simple agents (boids) that are allowed to move according to a set of basic rules. The result is akin to a flock of birds, a school of fish, or a swarm of insects.

Measurement

Measurements of bird flocking have been made [3] using high-speed cameras, and a computer analysis has been made to test the simple rules of flocking mentioned below. It is found that they generally hold true in the case of bird flocking, but the long range attraction rule (cohesion) applies to the nearest 5–10 neighbors of the flocking bird and is independent of the distance of these neighbors from the bird. In addition, there is an anisotropy with regard to this cohesive tendency, with more cohesion being exhibited towards neighbors to the sides of the bird, rather than in front or behind. This is likely due to the field of vision of the flying bird being directed to the sides rather than directly forward or backward.

Another recent study is based on an analysis of high speed camera footage of flocks above Rome, and uses a computer model assuming minimal behavioural rules. [4] [5] [6] [7]

Algorithm

Rules

Basic models of flocking behaviour are controlled by three simple rules:

Separation
Avoid crowding neighbours (short range repulsion)
Alignment
Steer towards average heading of neighbours
Cohesion
Steer towards average position of neighbours (long range attraction)

With these three simple rules, the flock moves in an extremely realistic way, creating complex motion and interaction that would be extremely hard to create otherwise.

Rule variants

The basic model has been extended in several different ways since Reynolds proposed it. For instance, Delgado-Mata et al. [8] extended the basic model to incorporate the effects of fear. Olfaction was used to transmit emotion between animals, through pheromones modelled as particles in a free expansion gas.

Hartman and Benes [9] introduced a complementary force to the alignment that they call the change of leadership. This steer defines the chance of the bird to become a leader and try to escape.

Hemelrijk and Hildenbrandt [10] used attraction, alignment, and avoidance, and extended this with a number of traits of real starlings:

  • birds fly according to fixed wing aerodynamics, while rolling when turning (thus losing lift);
  • they coordinate with a limited number of interaction neighbours of 7 (like real starlings);
  • they try to stay above a sleeping site (like starlings do at dawn), and when they happen to move outwards from the sleeping site, they return to it by turning; and
  • they move at relative fixed speed.

The authors showed that the specifics of flying behaviour as well as large flock size and low number of interaction partners were essential to the creation of the variable shape of flocks of starlings.

Complexity

In flocking simulations, there is no central control; each bird behaves autonomously. In other words, each bird has to decide for itself which flocks to consider as its environment. Usually environment is defined as a circle (2D) or sphere (3D) with a certain radius (representing reach).[ citation needed ]

A basic implementation of a flocking algorithm has complexity – each bird searches through all other birds to find those which fall into its environment.[ improper synthesis? ]

Possible improvements:[ citation needed ]

Lee Spector, Jon Klein, Chris Perry and Mark Feinstein studied the emergence of collective behaviour in evolutionary computation systems. [11]

Bernard Chazelle proved that under the assumption that each bird adjusts its velocity and position to the other birds within a fixed radius, the time it takes to converge to a steady state is an iterated exponential of height logarithmic in the number of birds. This means that if the number of birds is large enough, the convergence time will be so great that it might as well be infinite. [12] This result applies only to convergence to a steady state. For example, arrows fired into the air at the edge of a flock will cause the whole flock to react more rapidly than can be explained by interactions with neighbors, which are slowed down by the time delay in the bird's central nervous systems—bird-to-bird-to-bird.

Applications

Human shields greeted crossing border into Iraq.jpg
Flock-like behaviour in humans may occur when people are drawn to a common focal point or when repelled, as below: a crowd fleeing from the sound of gunfire.
Crowd fleeing sounds of gunfire near Westgate.jpg

In Cologne, Germany, two biologists from the University of Leeds demonstrated a flock-like behaviour in humans. The group of people exhibited a very similar behavioural pattern to that of a flock, where if 5% of the flock would change direction the others would follow suit. When one person was designated as a predator and everyone else was to avoid him, the flock behaved very much like a school of fish. [13]

Flocking has also been considered as a means of controlling the behaviour of Unmanned Air Vehicles (UAVs). [14]

Flocking is a common technology in screensavers, and has found its use in animation. Flocking has been used in many films [15] to generate crowds which move more realistically. Tim Burton's Batman Returns (1992) featured flocking bats.[ improper synthesis? ]

Flocking behaviour has been used for other interesting applications. It has been applied to automatically program Internet multi-channel radio stations. [16] It has also been used for visualizing information [17] and for optimization tasks. [18]

See also

Related Research Articles

<span class="mw-page-title-main">Emergence</span> Unpredictable phenomenon in complex systems

In philosophy, systems theory, science, and art, emergence occurs when a complex entity has properties or behaviors that its parts do not have on their own, and emerge only when they interact in a wider whole.

In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions. Evolution of the population then takes place after the repeated application of the above operators.

<span class="mw-page-title-main">Swarm behaviour</span> Collective behaviour of a large number of (usually) self-propelled entities of similar size

Swarm behaviour, or swarming, is a collective behaviour exhibited by entities, particularly animals, of similar size which aggregate together, perhaps milling about the same spot or perhaps moving en masse or migrating in some direction. It is a highly interdisciplinary topic.

<span class="mw-page-title-main">Particle swarm optimization</span> Iterative simulation method

In computational science, particle swarm optimization (PSO) is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. It solves a problem by having a population of candidate solutions, here dubbed particles, and moving these particles around in the search-space according to simple mathematical formula over the particle's position and velocity. Each particle's movement is influenced by its local best known position, but is also guided toward the best known positions in the search-space, which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions.

<span class="mw-page-title-main">Boids</span> Artificial life program

Boids is an artificial life program, developed by Craig Reynolds in 1986, which simulates the flocking behaviour of birds, and related group motion. His paper on this topic was published in 1987 in the proceedings of the ACM SIGGRAPH conference. The name "boid" corresponds to a shortened version of "bird-oid object", which refers to a bird-like object. Reynolds' boid model is one example of a larger general concept, for which many other variations have been developed since. The closely related work of Ichiro Aoki is noteworthy because it was published in 1982 — five years before Reynolds' boids paper.

<span class="mw-page-title-main">Peloton</span> Main group of bicycle riders

In a road bicycle race, the peloton is the main group or pack of riders. Riders in a group save energy by riding close to other riders. The reduction in drag is dramatic; riding in the middle of a well-developed group, drag can be reduced to as little as 5–10%. Exploitation of this potential energy saving leads to complex cooperative and competitive interactions between riders and teams in race tactics. The term is also used to refer to the community of professional cyclists in general.

Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems.

<span class="mw-page-title-main">Multi-agent system</span> Built of multiple interacting agents

A multi-agent system is a computerized system composed of multiple interacting intelligent agents. Multi-agent systems can solve problems that are difficult or impossible for an individual agent or a monolithic system to solve. Intelligence may include methodic, functional, procedural approaches, algorithmic search or reinforcement learning.

<span class="mw-page-title-main">Computational sociology</span> Branch of the discipline of sociology

Computational sociology is a branch of sociology that uses computationally intensive methods to analyze and model social phenomena. Using computer simulations, artificial intelligence, complex statistical methods, and analytic approaches like social network analysis, computational sociology develops and tests theories of complex social processes through bottom-up modeling of social interactions.

An agent-based model (ABM) is a computational model for simulating the actions and interactions of autonomous agents in order to understand the behavior of a system and what governs its outcomes. It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo methods are used to understand the stochasticity of these models. Particularly within ecology, ABMs are also called individual-based models (IBMs). A review of recent literature on individual-based models, agent-based models, and multiagent systems shows that ABMs are used in many scientific domains including biology, ecology and social science. Agent-based modeling is related to, but distinct from, the concept of multi-agent systems or multi-agent simulation in that the goal of ABM is to search for explanatory insight into the collective behavior of agents obeying simple rules, typically in natural systems, rather than in designing agents or solving specific practical or engineering problems.

<span class="mw-page-title-main">Swarm robotics</span> Coordination of multiple robots as a system

Swarm robotics is an approach to the coordination of multiple robots as a system which consist of large numbers of mostly simple physical robots. ″In a robot swarm, the collective behavior of the robots results from local interactions between the robots and between the robots and the environment in which they act.″ It is supposed that a desired collective behavior emerges from the interactions between the robots and interactions of robots with the environment. This approach emerged on the field of artificial swarm intelligence, as well as the biological studies of insects, ants and other fields in nature, where swarm behaviour occurs.

Humans have considered and tried to create non-biological life for at least 3000 years. As seen in tales ranging from Pygmalion to Frankenstein, humanity has long been intrigued by the concept of artificial life.

<span class="mw-page-title-main">Flock (birds)</span> A group of individual birds travelling together

A flock is a gathering of individual birds to forage or travel collectively. Avian flocks are typically associated with migration. Flocking also offers foraging benefits and protection from predators, although flocking can have costs for individual members.

<span class="mw-page-title-main">Collective animal behavior</span> Animal cognition

Collective animal behaviour is a form of social behavior involving the coordinated behavior of large groups of similar animals as well as emergent properties of these groups. This can include the costs and benefits of group membership, the transfer of information, decision-making process, locomotion and synchronization of the group. Studying the principles of collective animal behavior has relevance to human engineering problems through the philosophy of biomimetics. For instance, determining the rules by which an individual animal navigates relative to its neighbors in a group can lead to advances in the deployment and control of groups of swimming or flying micro-robots such as UAVs.

<span class="mw-page-title-main">Shoaling and schooling</span> In biology, any group of fish that stay together for social reasons

In biology, any group of fish that stay together for social reasons are shoaling, and if the group is swimming in the same direction in a coordinated manner, they are schooling. In common usage, the terms are sometimes used rather loosely. About one quarter of fish species shoal all their lives, and about one half shoal for part of their lives.

<span class="mw-page-title-main">Active matter</span> Matter behavior at system scale

Active matter is matter composed of large numbers of active "agents", each of which consumes energy in order to move or to exert mechanical forces. Such systems are intrinsically out of thermal equilibrium. Unlike thermal systems relaxing towards equilibrium and systems with boundary conditions imposing steady currents, active matter systems break time reversal symmetry because energy is being continually dissipated by the individual constituents. Most examples of active matter are biological in origin and span all the scales of the living, from bacteria and self-organising bio-polymers such as microtubules and actin, to schools of fish and flocks of birds. However, a great deal of current experimental work is devoted to synthetic systems such as artificial self-propelled particles. Active matter is a relatively new material classification in soft matter: the most extensively studied model, the Vicsek model, dates from 1995.

MASON is a multi-agent simulation environment developed in Java.

<span class="mw-page-title-main">Self-propelled particles</span> Type of autonomous agent

Self-propelled particles (SPP), also referred to as self-driven particles, are terms used by physicists to describe autonomous agents, which convert energy from the environment into directed or persistent motion. Natural systems which have inspired the study and design of these particles include walking, swimming or flying animals. Other biological systems include bacteria, cells, algae and other micro-organisms. Generally, self-propelled particles often refer to artificial systems such as robots or specifically designed particles such as swimming Janus colloids, bimetallic nanorods, nanomotors and walking grains. In the case of directed propulsion, which is driven by a chemical gradient, this is referred to as chemotaxis, observed in biological systems, e.g. bacteria quorum sensing and ant pheromone detection, and in synthetic systems, e.g. enzyme molecule chemotaxis and enzyme powered hard and soft particles.

<span class="mw-page-title-main">Artificial life</span> Field of study

Artificial life is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987, Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.

<span class="mw-page-title-main">Felipe Cucker</span> Uruguayan mathematician

Juan Felipe Cucker Farkas is an Uruguayan mathematician and theoretical computer scientist who has done research into the complexity theory of the Blum–Shub–Smale computational model and the complexity of numerical algorithms in linear programming and numerical algebraic geometry.

References

  1. O'Loan, OJ; Evans, MR (1999). "Alternating steady state in one-dimensional flocking". Journal of Physics A: Mathematical and General. 32 (8). IOP Publishing: L99. arXiv: cond-mat/9811336 . Bibcode:1999JPhA...32L..99O. doi:10.1088/0305-4470/32/8/002. S2CID   7642063.
  2. Reynolds, Craig W. (1987). "Flocks, herds and schools: A distributed behavioural model.". ACM SIGGRAPH Computer Graphics. Vol. 21. pp. 25–34.
  3. Feder, Toni (October 2007). "Statistical physics is for the birds". Physics Today. 60 (10): 28–30. Bibcode:2007PhT....60j..28F. doi: 10.1063/1.2800090 .
  4. Hildenbrandt, H; Carere, C; Hemelrijk, CK (2010). "Self-organized aerial displays of thousands of starlings: a model". Behavioral Ecology. 21 (6): 1349–1359. arXiv: 0908.2677 . doi: 10.1093/beheco/arq149 .
  5. Hemelrijk, CK; Hildenbrandt, H (2011). "Some causes of the variable shape of flocks of birds". PLOS ONE. 6 (8): e22479. Bibcode:2011PLoSO...622479H. doi: 10.1371/journal.pone.0022479 . PMC   3150374 . PMID   21829627.
  6. Project Starflag
  7. Swarm behaviour model by University of Groningen
  8. Delgado-Mata C, Ibanez J, Bee S, et al. (2007). "On the use of Virtual Animals with Artificial Fear in Virtual Environments". New Generation Computing. 25 (2): 145–169. doi:10.1007/s00354-007-0009-5. S2CID   26078361.
  9. Hartman C, Benes B (2006). "Autonomous boids". Computer Animation and Virtual Worlds. 17 (3–4): 199–206. doi:10.1002/cav.123. S2CID   15720643.
  10. Hemelrijk, C. K.; Hildenbrandt, H. (2011). "Some Causes of the Variable Shape of Flocks of Birds". PLOS ONE. 6 (8): e22479. Bibcode:2011PLoSO...622479H. doi: 10.1371/journal.pone.0022479 . PMC   3150374 . PMID   21829627.
  11. Spector, L.; Klein, J.; Perry, C.; Feinstein, M. (2003). "Emergence of Collective Behavior in Evolving Populations of Flying Agents". Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003). Springer-Verlag. Retrieved 2007-05-01.
  12. Bernard Chazelle, The Convergence of Bird Flocking, J. ACM 61 (2014)
  13. "http://psychcentral.com/news/2008/02/15/herd-mentality-explained/1922.html Archived 2014-11-29 at the Wayback Machine ". Retrieved on October 31st 2008.
  14. Senanayake, M., Senthooran, I., Barca, J. C., Chung, H., Kamruzzaman, J., & Murshed, M. "Search and tracking algorithms for swarms of robots: A survey."
  15. Gabbai, J. M. E. (2005). Complexity and the Aerospace Industry: Understanding Emergence by Relating Structure to Performance using Multi-Agent Systems (Thesis). Manchester: University of Manchester Doctoral Thesis. Archived from the original on 2014-12-19. Retrieved 2007-02-21.
  16. Ibanez J, Gomez-Skarmeta AF, Blat J (2003). "DJ-boids: emergent collective behaviour as multichannel radio station programming". Proceedings of the 8th international conference on Intelligent User Interfaces. pp. 248–250. doi:10.1145/604045.604089.
  17. Moere A V (2004). "Time-Varying Data Visualization Using Information Flocking Boids" (PDF). Proceedings of the IEEE Symposium on Information Visualization. pp. 97–104. doi:10.1109/INFVIS.2004.65. Archived (PDF) from the original on 2022-10-09.
  18. Cui Z, Shi Z (2009). "Boid particle swarm optimisation". International Journal of Innovative Computing and Applications. 2 (2): 77–85. doi:10.1504/IJICA.2009.031778.

Sources