The Franklin stove is a metal-lined fireplace named after Benjamin Franklin, who invented it in 1742. [1] It had a hollow baffle near the rear (to transfer more heat from the fire to a room's air) and relied on an "inverted siphon" to draw the fire's hot fumes around the baffle. [2] It was intended to produce more heat and less smoke than an ordinary open fireplace, but it achieved few sales until it was improved by David Rittenhouse. It is also known as a "circulating stove" or the "Pennsylvania fireplace".
The two distinguishing features of Franklin's stove were a hollow baffle (a metal panel that directed the flow of the fire's fumes) and a flue that acted as an upside-down siphon.
Baffles were used to lengthen the path that either a room's air or a fire's fumes had to flow through ductwork, thereby allowing more heat to be transferred to the room's air temperatures or from the fire's fumes. Specifically, ducts could be installed within the brickwork around a hearth; cool room air would then enter the lower end of a duct, be heated by the hot walls of the duct, rise, and finally exit from the duct's upper end, and return to the room. The longer the path through which the air flowed, the more heat would be transferred from the fire to the air. Similarly, the longer the duct through which a fire's fumes had to flow before reaching the chimney, the more heat would be transferred from the fumes to the room's air.
The use of baffles to extract more heat from a fire and its fumes was not new. In 1618, Franz Kessler (c. 1580–1650) of Frankfurt-am-Main, Germany published Holzsparkunst (The Art of Saving Wood), featuring a stove in which the fumes from a fire were forced to snake through five chambers, one above the other, before entering the chimney. [3] Kessler also documented an enclosed heating stove that, like Franklin's stove, had a baffle directly behind the fire, thereby lengthening the path that the fire's fumes had to travel before reaching the chimney. [4]
In 1624, a French physician, Louis Savot (1579–1640), described a fireplace that he had built in the Louvre. Ducts passed under, behind, and above the fire in the hearth. Cool air in the room entered the lower opening of a duct, was warmed, rose, and returned to the room through the duct's upper opening. [5] In 1713, Frenchman Nicolas Gauger (c. 1680–1730) published a book, La Mécanique du Feu (The Mechanics of Fire), in which he presented novel designs for fireplaces. Gauger surrounded the hearth with hollow spaces. Inside these spaces were baffles. Cool room air entered the spaces through lower openings, was warmed as it snaked around the baffles in the spaces, and returned to the room through upper openings. [6]
In Franklin's stove, a hollow baffle was positioned inside and near the rear of the stove. The baffle was a wide but thin cast-iron box, which was open to the room's air at its bottom and two holes on its sides, near its top. Air entered the bottom of the box and was heated both by the fire and by the fumes flowing over the front and back of the box. The warmed air then rose inside the baffle and exited through the holes in the baffle's sides. [7] Franklin's baffle thus performed at least two functions: like Kessler's heating stove, it lengthened the path that the fire's fumes had to follow before reaching the chimney, allowing more heat to be extracted from the fumes; and like Gauger's fireplace, it placed a duct near the fire, which heated the room's air via convection.
Some early experimenters reasoned that if a fire in a fireplace were connected by a U-shaped duct to the chimney, the hot gases ascending through the chimney would draw the fire's smoke and fumes first downwards through one leg of the U and then upwards through the other leg and the chimney. This was what Franklin called an "aerial syphon" or "syphon revers'd". [8] This inverted siphon was used to draw the fire's hot fumes up the front and down the back of the Franklin stove's hollow baffle, in order to extract as much heat as possible from the fumes.
The earliest known example of such an inverted siphon was the 1618 fireplace of Franz Kessler. [9] The fire burned in a ceramic box. Inside the box and behind the fire was a baffle. The baffle forced the fire's fumes to descend behind the baffle before exiting to the chimney. The intention was to extract as much heat as possible from the fumes by extending the path that the fumes had to follow before they reached the chimney.
The 1678 fireplace of Prince Rupert (1619–1682) also included an inverted siphon. Rupert placed a hanging iron door between the fire grate and the chimney. In order to exit through the chimney, the fire's fumes and smoke first had to descend below the edge of the door before rising through the chimney. [10]
Another early example of an inverted siphon was a stove that was exhibited in 1686 at the annual Foire Saint-Germain, Paris. Its inventor, André Dalesme (1643–1727), called it a smokeless stove (furnus acapnos). The stove consisted of an iron bowl in which the fuel was burned. A pipe extended from the bowl's bottom and then upwards into a chimney. Shortly after starting a fire in the bowl, hot air would begin to rise through the pipe and then up the chimney; this created a downward draft through the bowl, which drew the fire and its fumes down into the bowl. Once the draft was initiated, it was self-sustaining as long as the fire burned. [11] Dalesme's stove could burn wood, incense, and even "coal steept in cats-piss" yet produce very little smoke or smell. [12] [13] These results showed that fires could be used inside a room, without filling the house with smoke.
Franklin's stove contained a baffle directly behind the fire, which forced the fire's fumes to flow downward before they reached the chimney. This required a U-shaped duct in the floor behind the stove, so that the fumes could flow from the stove into the chimney. Thus Franklin's stove incorporated an inverted siphon.
Gauger's book on his innovative fireplace designs was translated into English – Fires Improv'd: Being a New Method of Building Chimneys, So as to Prevent their Smoaking (1715) – by a French immigrant to England, Jean Théophile Desaguliers (1683–1744). [14] In a postscript to Desaguliers' book A Course in Experimental Philosophy (1744), Desaguliers again briefly described Gauger's fireplaces and mentioned his own work on the subject. [15] Franklin read both of Desaguliers' books [16] and developed his own designs for a stove that could provide more heat with less smoke.
In 1742, Franklin finished his first design which implemented new scientific concepts about heat which had been developed by the Dutch physician Herman Boerhaave (1668–1738), a proponent of Isaac Newton's ideas. [17] He supplied his equipment from a local iron pioneer William Branson from Reading, PA. [18] Franklin wanted his stoves to be available to everyone, relishing popular appreciation of his handiwork and eschewing patents.[ citation needed ] This combination of events led to the first Franklin stoves being manufactured by Reading furnaces, which was owned by the local Van Leer family. [19] [20] [21] Two years later, Franklin wrote a pamphlet describing his design and how it operated in order to sell his product. [22] Around this time, the deputy governor of Pennsylvania, George Thomas, made an offer to Franklin to patent his design, but Franklin never patented any of his designs and inventions. He believed "that as we enjoy great advantages from the inventions of others, we should be glad of an opportunity to serve others by any invention of ours, and this we should do freely and generously". [23] As a result, many others were able to use Franklin's design and improve it. Although his stove was intended to have the double purpose of cooking and heating a room, as time progressed and new stove designs became available, the Franklin stove's main use became to heat a room. Many others improved on the Franklin stove design, but to this day, most American fireplaces are box-shaped, similar to the Franklin stove. The exception is the Rumford fireplace, developed by Benjamin Thompson.
The stove was about 30 inches (76 cm) tall, with a box shape. The front was open, except for a decorative panel in the upper part of the box. The back of the box was to be placed a few inches away from the flue (chimney). On the bottom panel there were several holes to allow the smoke to escape; these were connected to the chimney. The panels were bolted together with iron screws through pre-cast ears. [24] Inside there was a small, thin rectangular prism that would force the smoke into the holes. The plates were all made from iron.[ citation needed ]
Franklin's stove sold poorly. [25] The problem lay with the inverted siphon: the smoke had to pass through a cold flue (which was set in the floor) before the smoke could enter the chimney; consequently, the smoke cooled too much and the stove did not have a good draft. [26] The inverted siphon would operate properly only if the fire burned constantly, so that the temperature in the flue was high enough to produce a draft.
A later version, designed by David Rittenhouse, solved many of the problems Franklin's original stove had, and became popular. Franklin's fame outweighed Rittenhouse's, though, so history remembers the Franklin Stove rather than the Rittenhouse Stove. [27] The smaller Latrobe stove, often referred to as a Baltimore Heater, was patented in 1846 and became popular.
A hearth is the place in a home where a fire is or was traditionally kept for home heating and for cooking, usually constituted by at least a horizontal hearthstone and often enclosed to varying degrees by any combination of reredos, fireplace, oven, smoke hood, or chimney. Hearths are usually composed of masonry such as brick or stone. For millennia, the hearth was such an integral part of a home, usually its central and most important feature, that the concept has been generalized to refer to a homeplace or household, as in the terms "hearth and home" and "keep the home fires burning". In the modern era, since the advent of central heating, hearths are usually less central to most people's daily life because the heating of the home is instead done by a furnace or a heating stove, and cooking is instead done with a kitchen stove/range alongside other home appliances; thus many homes built in the 20th and 21st centuries do not have hearths. Nonetheless, many homes still have hearths, which still help serve the purposes of warmth, cooking, and comfort.
Colonel Sir Benjamin Thompson, Count Rumford, FRS, was an American-born British military officer, scientist, inventor and nobleman. Born in Woburn, Massachusetts, he supported the Loyalist cause during the American War of Independence, commanding the King's American Dragoons during the conflict. After the war ended in 1783, Thompson moved to London, where he was recognised for his administrative talents and received a knighthood from George III in 1784.
A chimney is an architectural ventilation structure made of masonry, clay or metal that isolates hot toxic exhaust gases or smoke produced by a boiler, stove, furnace, incinerator, or fireplace from human living areas. Chimneys are typically vertical, or as near as possible to vertical, to ensure that the gases flow smoothly, drawing air into the combustion in what is known as the stack, or chimney effect. The space inside a chimney is called the flue. Chimneys are adjacent to large industrial refineries, fossil fuel combustion facilities or part of buildings, steam locomotives and ships.
A brazier is a container used to burn charcoal or other solid fuel for cooking, heating or cultural rituals. It often takes the form of a metal box or bowl with feet. Its elevation helps circulate air, feeding oxygen to the fire. Braziers have been used since ancient times; the Nimrud brazier dates to at least 824 BC.
A stove or range is a device that generates heat inside or on top of the device, for local heating or cooking. Stoves can be powered with many fuels, such as electricity, natural gas, gasoline, wood, and coal.
Wood fuel is a fuel such as firewood, charcoal, chips, sheets, pellets, and sawdust. The particular form used depends upon factors such as source, quantity, quality and application. In many areas, wood is the most easily available form of fuel, requiring no tools in the case of picking up dead wood, or few tools, although as in any industry, specialized tools, such as skidders and hydraulic wood splitters, have been developed to mechanize production. Sawmill waste and construction industry by-products also include various forms of lumber tailings. About half of wood extracted from forests worldwide is used as fuelwood.
A kitchen stove, often called simply a stove or a cooker, is a kitchen appliance designed for the purpose of cooking food. Kitchen stoves rely on the application of direct heat for the cooking process and may also contain an oven, used for baking. "Cookstoves" are heated by burning wood or charcoal; "gas stoves" are heated by gas; and "electric stoves" by electricity. A stove with a built-in cooktop is also called a range.
A central heating system provides warmth to a number of spaces within a building from one main source of heat. It is a component of heating, ventilation, and air conditioning systems, which can both cool and warm interior spaces.
A kitchen hood, exhaust hood, hood fan, extractor hood, or range hood is a device containing a mechanical fan that hangs above the stove or cooktop in the kitchen. It removes airborne grease, combustion products, fumes, smoke, heat, and steam from the air by evacuation of the air and filtration. In commercial kitchens exhaust hoods are often used in combination with fire suppression devices so that fumes from a grease fire are properly vented and the fire is put out quickly. Commercial vent hoods may also be combined with a fresh air fan that draws in exterior air, circulating it with the cooking fumes, which is then drawn out by the hood.
A fireplace or hearth is a structure made of brick, stone or metal designed to contain a fire. Fireplaces are used for the relaxing ambiance they create and for heating a room. Modern fireplaces vary in heat efficiency, depending on the design.
The Rumford fireplace is a tall, shallow fireplace designed by Sir Benjamin Thompson, Count Rumford, an Anglo-American physicist best known for his investigations of heat. Its shallow, angled sides are designed to reflect heat into the room, and its streamlined throat minimizes turbulence, thereby carrying away smoke with little loss of heated room air.
Ondol or gudeul in Korean traditional architecture is underfloor heating that uses direct heat transfer from wood smoke to heat the underside of a thick masonry floor. In modern usage, it refers to any type of underfloor heating, or to a hotel or a sleeping room in Korean style.
A damper is a valve or plate that stops or regulates the flow of air inside a duct, chimney, VAV box, air handler, or other air-handling equipment. A damper may be used to cut off central air conditioning to an unused room, or to regulate it for room-by-room temperature and climate control - for example, in the case of Volume Control Dampers. Its operation can be manual or automatic. Manual dampers are turned by a handle on the outside of a duct. Automatic dampers are used to regulate airflow constantly and are operated by electric or pneumatic motors, in turn controlled by a thermostat or building automation system. Automatic or motorized dampers may also be controlled by a solenoid, and the degree of air-flow calibrated, perhaps according to signals from the thermostat going to the actuator of the damper in order to modulate the flow of air-conditioned air in order to effect climate control.
A flue is a duct, pipe, or opening in a chimney for conveying exhaust gases from a fireplace, furnace, water heater, boiler, or generator to the outdoors. Historically the term flue meant the chimney itself. In the United States, they are also known as vents for boilers and as breeching for water heaters and modern furnaces. They usually operate by buoyancy, also known as the stack effect, or the combustion products may be "induced" via a blower. As combustion products contain carbon monoxide and other dangerous compounds, proper "draft", and admission of replacement air is imperative. Building codes, and other standards, regulate their materials, design, and installation.
A masonry heater is a device for warming an interior space through radiant heating, by capturing the heat from periodic burning of fuel, and then radiating the heat at a fairly constant temperature for a long period. Masonry heaters covered in tile are called Kachelofen. The technology has existed in different forms, from back into the Neoglacial and Neolithic periods. Archaeological digs have revealed excavations of ancient inhabitants utilizing hot smoke from fires in their subterranean dwellings, to radiate into the living spaces. These early forms eventually evolved into modern systems.
A convection heater, also known as a convector heater, is a type of heater that utilizes convection currents to heat and circulate air. These currents move through the appliance and across its heating element, using thermal conduction to warm the air and decrease its density relative to colder air, causing it to rise.
A fireplace insert is a device that can be inserted into an existing masonry or prefabricated wood fireplace. Fireplace inserts can be fueled by gas, wood, electricity, coal, or wood pallet. Most fireplace inserts are made from cast iron or steel. Fresh air enters through vents below the insert, where it then circulates around the main chamber. The hot air then exits through a chimney. Typical fireplace inserts have insulated glass doors that allow the fire to be viewed while closed, improving its heat output and fuel efficiency. Air is directed across the interior surface of the glass to prevent a build-up of ash.
A wood-burning stove is a heating or cooking appliance capable of burning wood fuel, often called solid fuel, and wood-derived biomass fuel, such as sawdust bricks. Generally the appliance consists of a solid metal closed firebox, often lined by fire brick, and one or more air controls. The first wood-burning stove was patented in Strasbourg in 1557. This was two centuries before the Industrial Revolution, so iron was still prohibitively expensive. The first wood-burning stoves were high-end consumer items and only gradually became used widely.
A rocket mass heater (RMH), also known as rocket stove mass heater, is a form of slow-release radiant heating system, designed to primarily heat people and secondarily to warm areas in line of sight around it. Variations of RMH can also be extended for the functions of cooking, heating water, and producing warm air for distribution.
{{cite book}}
: CS1 maint: multiple names: authors list (link) See especially the illustrations at the end of the book.