Fusarium langsethiae

Last updated

Fusarium langsethiae
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Hypocreales
Family: Nectriaceae
Genus: Fusarium
Species:
F. langsethiae
Binomial name
Fusarium langsethiae
Torp & Nirenberg (2004)

Fusarium langsethiae is a species of fungus in the family Nectriaceae. It is a suspected plant pathogen. [1] This species was isolated from oats, wheat and barley kernels in several European countries. It resembles Fusarium poae , from which it differs by slower growth, less aerial mycelium and absence of odour. Its turnip-shaped or spherical conidia are borne in the aerial mycelium, whereas those of F. poae are produced on straight monophialides mostly in the aerial mycelium. [2] It does not produce sporodochial conidia. [3]

Contents

Related Research Articles

<span class="mw-page-title-main">Fusarium ear blight</span> Fungal disease of cereals

Fusarium ear blight (FEB), is a fungal disease of cereals, including wheat, barley, oats, rye and triticale. FEB is caused by a range of Fusarium fungi, which infects the heads of the crop, reducing grain yield. The disease is often associated with contamination by mycotoxins produced by the fungi already when the crop is growing in the field. The disease can cause severe economic losses as mycotoxin-contaminated grain cannot be sold for food or feed.

<span class="mw-page-title-main">Foodborne illness</span> Illness from eating spoiled food

Foodborne illness is any illness resulting from the contamination of food by pathogenic bacteria, viruses, or parasites, as well as prions, and toxins such as aflatoxins in peanuts, poisonous mushrooms, and various species of beans that have not been boiled for at least 10 minutes.

A mycotoxin is a toxic secondary metabolite produced by fungi and is capable of causing disease and death in both humans and other animals. The term 'mycotoxin' is usually reserved for the toxic chemical products produced by fungi that readily colonize crops.

<i>Fusarium</i> Genus of fungi

Fusarium is a large genus of filamentous fungi, part of a group often referred to as hyphomycetes, widely distributed in soil and associated with plants. Most species are harmless saprobes, and are relatively abundant members of the soil microbial community. Some species produce mycotoxins in cereal crops that can affect human and animal health if they enter the food chain. The main toxins produced by these Fusarium species are fumonisins and trichothecenes. Despite most species apparently being harmless, some Fusarium species and subspecific groups are among the most important fungal pathogens of plants and animals.

<span class="mw-page-title-main">T-2 mycotoxin</span> Chemical compound

T-2 mycotoxin is a trichothecene mycotoxin. It is a naturally occurring mold byproduct of Fusarium spp. fungus which is toxic to humans and other animals. The clinical condition it causes is alimentary toxic aleukia and a host of symptoms related to organs as diverse as the skin, airway, and stomach. Ingestion may come from consumption of moldy whole grains. T-2 can be absorbed through human skin. Although no significant systemic effects are expected after dermal contact in normal agricultural or residential environments, local skin effects can not be excluded. Hence, skin contact with T-2 should be limited.

<span class="mw-page-title-main">Trichothecene</span> Large family of chemically related mycotoxins

The trichothecenes are a large family of chemically related mycotoxins. They are produced by various species of Fusarium, Myrothecium,Trichoderma/Podostroma, Trichothecium, Cephalosporium, Verticimonosporium, and Stachybotrys. Chemically, trichothecenes are a class of sesquiterpenes.

<i>Blumeria graminis</i> Fungal pathogen of grasses

Blumeria graminis is a fungus that causes powdery mildew on grasses, including cereals. It is the only species in the genus Blumeria. It has also been called Erysiphe graminis and Oidium monilioides or Oidium tritici.

<i>Fusarium culmorum</i> Fungal disease, head blight of wheat

Fusarium culmorum is a fungal plant pathogen and the causal agent of seedling blight, foot rot, ear blight, stalk rot, common root rot and other diseases of cereals, grasses, and a wide variety of monocots and dicots. In coastal dunegrass, F. culmorum is a nonpathogenic symbiont conferring both salt and drought tolerance to the plant.

<i>Alternaria alternata</i> Pathogenic fungus

Alternaria alternata is a fungus causing leaf spots, rots, and blights on many plant parts, and other diseases. It is an opportunistic pathogen on over 380 host species of plant.

<i>Gibberella zeae</i> Species of fungus

Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight (FHB), a devastating disease on wheat and barley. The pathogen is responsible for billions of dollars in economic losses worldwide each year. Infection causes shifts in the amino acid composition of wheat, resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol (DON), which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.

Fusarium redolens is a species of fungus in the genus Fusarium and family Nectriaceae. This species is a soil-borne plant pathogen in temperate prairies. It causes diseases such as root, crown, and spear rot, seedling damping-off, and wilting disease. It is a known producer of the alkaloids peimisine and imperialine-3β-d-glucoside, which has implications for traditional Chinese medicine.

Fusarium sporotrichioides is a fungal plant pathogen, one of various Fusarium species responsible for damaging crops, in particular causing a condition known as Fusarium head blight in wheat, consequently being of notable agricultural and economic importance. The species is ecologically widespread, being found across tropical and temperate regions, and is a significant producer of mycotoxins, particularly trichothecenes. Although mainly infecting crops, F. sporotrichioides-derived mycotoxins can have repercussions for human health in the case of the ingestion of infected cereals. One such example includes the outbreak of alimentary toxic aleukia (ATA) in Russia, of which F. sporotrichioides-infected crop was suspected to be the cause. Although current studies on F. sporotrichioides are somewhat limited in comparison to other species in the genus, Fusarium sporotrichioides has found several applications as a model system for experimentation in molecular biology.

Fusarium tricinctum is a fungal and plant pathogen of various plant diseases worldwide, especially in temperate regions. It is found on many crops in the world including malt barley, and cereals.

Mycoestrogens are xenoestrogens produced by fungi. They are sometimes referred to as mycotoxins. Among important mycoestrogens are zearalenone, zearalenol and zearalanol. Although all of these can be produced by various Fusarium species, zearalenol and zearalanol may also be produced endogenously in ruminants that have ingested zearalenone. Alpha-zearalanol is also produced semisynthetically, for veterinary use; such use is prohibited in the European Union.

<i>Fusarium mangiferae</i> Species of fungus

Fusarium mangiferae is a fungal plant pathogen that infects mango trees. Its aerial mycelium is white and floccose. Conidiophores on aerial mycelium originating erect and prostrate from substrate; they are sympodially branched bearing mono and polyphialides. Polyphialides have 2–5 conidiogenous openings. Phialides on the aerial conidiophores mono- and polyphialidic. Sterile hyphae are absent. Microconidia are variable in shape, obovoid conidia are the most abundant type, oval to allantoid conidia occurring occasionally. Microconidia mostly 0-septate with 1-septate conidia occurring less abundantly. Sporodochia are present. Macroconidia are long and slender, usually 3–5 septate. Chlamydospores are absent.

Fusarium sterilihyphosum is a plant pathogen. It infects mango trees. Its aerial mycelium is almost white; conidiophores on aerial mycelium are erect, occasionally prostrate, and sympodially branched bearing mono- and polyphialides. Phialides on aerial conidiophores mono and polyphialidic. Sterile hyphae are present. Microconidia are obovoid, oval to allantoid, 0-septate conidia are abundant, 1-septate conidia less common. Sporodochia are seldom present. Macroconidia have slightly beaked apical cells, a footlike basal cell, 3–5 septate. Chlamydospores are absent.

<i>Penicillium polonicum</i> Species of fungus

Penicillium polonicum is a species of fungus in the genus Penicillium which produces penicillic acid, verucosidin, patulin, anacine, 3-methoxyviridicatin and glycopeptides. Penicillium polonicum can spoil cereals, peanuts, onions, dried meats, citrus fruits

Hemibiotrophs are the spectrum of plant pathogens, including bacteria, oomycete and a group of plant pathogenic fungi that keep its host alive while establishing itself within the host tissue, taking up the nutrients with brief biotrophic-like phase. It then, in later stages of infection switches to a necrotrophic life-style, where it rampantly kills the host cells, deriving its nutrients from the dead tissues.

Mycolicibacterium agri is a species of bacteria from the phylum Actinomycetota that was first isolated from soil. It is non-pigmented and grows rapidly at 25–45 °C on Ogawa egg medium. It has also been isolated from a human skin infection, and raw milk M. agri is capable of degrading octocrylene.

Fusarium pseudoanthophilum is a species of fungus in the family Nectriaceae. It was first described by Kerry O'Donnell and Jürgen Kroschel in 1998 as Fusarium brevicatenulatum. It was then listed as a synonym of F. brevicatenulatum by Amata and colleagues in 2010, who confirmed the species are the same through sexual compatibility tests. As of April 2024, Index Fungorum does not recognize the proposed synonymy.

References

  1. Imathiu, Samuel M.; Edwards, Simon G.; Ray, Rumiana V.; Back, Matthew A. (2013). "Fusarium langsethiae- a HT-2 and T-2 Toxins Producer that Needs More Attention". Journal of Phytopathology. 161 (1): 1–10. doi:10.1111/jph.12036. ISSN   0931-1785.
  2. Yli-Mattila T, Mach RL, Alekhina IA, Bulat SA, Koskinen S, Kullnig-Gradinger CM, et al. (2004). "Phylogenetic relationship of Fusarium langsethiae to Fusarium pose and Fusarium sporotrichioides as inferred by IGS, ITS, beta-tubulin sequences and UP-PCR hybridization analysis". International Journal of Food Microbiology. 95 (3): 267–85. doi:10.1016/j.ijfoodmicro.2003.12.006. PMID   15337592.
  3. Torp, Mona; Nirenberg, Helgard I. (2004). "Fusarium langsethiae sp. nov. on cereals in Europe". International Journal of Food Microbiology. 95 (3): 247–56. doi:10.1016/j.ijfoodmicro.2003.12.014. ISSN   0168-1605. PMID   15337590.

Further reading