Gardner fibroma

Last updated
Gardner fibroma
Other namesGardner-associated fibroma
Specialty Pediatrics, Dermatology, Pathology, Surgical oncology
Symptoms Typically a painless tumor in the skin
Usual onsetAll ages but mostly in the first decade of life
TypesMay be an isolated disorder or a manifestation of the genetic disease, adenomatous polyposis coli
TreatmentSurgical resection and follow-up testing for the presence or development of adenomatous polyposis coli
FrequencyRare

Gardner fibroma (GF) (also termed Gardner-associated fibroma [1] ) is a benign fibroblastic tumor (i.e. a tumor containing fibroblasts, the most common cell type in connective tissue). GF tumors typically develop in the dermis (i.e. layer of skin underneath the epidermis) and adjacent subcutaneous tissue lying just below the dermis. [2] These tumors typically occur on the back, abdomen, and other superficial sites [2] but in rare cases have been diagnoses in internal sites such as the retroperitoneum [3] and around the large blood vessels in the upper thoracic cavity. [4] The World Health Organization, 2020, classified Gardner fibroma as a benign tumor in the category of fibroblastic and myofibroblastic tumors. [5]

Contents

In the majority of cases, [6] GF tumors are manifestations of the genetic disease, familial adenomatous polyposis (FAP), or its variant, the Gardner syndrome (GS). [7] (Hereafter, references to FAP will include its GS variant.) Furthermore, some cases of GF tumors, including those which are not associated with FAP, progress to or, after their surgical removal, recur as desmoid tumors (DT). A minority [1] of desmoid tumors, mainly those developing in the abdominal cavity, [3] are also associated with FAP. [3] Cases of Gardner fibroma and desmoid tumors that lack any other evidence of being associated with FAB at the time of diagnosis are often termed sporadic Gardner fibromas [1] [8] and sporadic desmoid tumors. [9] However, some cases of sporadic GF and DT will, over the ensuing months or years, present with other signs of, and be diagnosed as, FAP. In these cases, the initial GF and DT tumors are considered the first sign of FAP and termed sentinel GF [2] and sentinel DT [9] tumors.

There are no large studies that clearly define the best treatment(s) for Gardner fibroma tumors. Common treatment strategies for these tumors include: surgical removal; [1] evaluations of the individuals bearing these tumors as well as their family members for evidence of FAP; genetic counseling; and long-term follow-up studies to detect evidence of FAP and recurrences of resected tumors. [1] [2] [10]

Presentation

GF tumors typically present as a single but in some cases multiple plaques (i.e. papule-like masses that are 10 mm or more in longest diameter) [6] located on the skin of the back or, less commonly, head, neck, extremities, or abdominal regions. [1] In one study, the tumors ranged form 0.3 to 12 cm in greatest dimension (mean: 3.9 cm). [1] GF plaques on the skin are generally white, rubbery, [9] painless masses [6] that occur mainly in children during the first decade of life [9] but have also been diagnosed in adults as old as 59 years. [3] Rare cases of CF have presented as large masses located in the: mediastinum, i.e. central compartment of the thoracic cavity (a mediastinal GF has caused the life-threatening superior vena cava syndrome); [4] retropharyngeal space, i.e. space behind the pharynx and upper esophagus (a retropharyngeal GF tumor has caused airway obstruction); [11] retroperitoneal space; [3] and mesentery. [9]

The majority of individuals presenting with GF tumors have or will develop FAP due to mutations in the APC gene. This gene encodes (i.e. directs production of) the adenomatous polyposis coli protein (APC protein) but when mutated in FAP encodes an inactive or weakened product. APC protein acts indirectly to degrade β-catenin, a protein which when overexpressed induces various cancers. Partially or totally inactive APC protein in FAP allows the excessive intracellular accumulation of β-catenin and thereby promotes development of the tumors, cancers, and other manifestations of this disease. [12]

FAP is an autosomal dominant genetic disease which in ~70–80% of cases is due to inheritance and in ~20-30% of case is due to a germline mutation (i.e. non-familial FAP caused by an APC gene mutation that occurs in the germ cells that develop into an individual). Hence, individuals with FAP commonly but not always have family members with the disease. [13] The central feature of FAP is the formation over time of an increasing number of adenomatous polyps (i.e. abnormal growths of tissue projecting from a mucous membrane that have a high potential to become cancerous) in the colon and rectum. Typically, these polyps arise by adolescence and progress to cancer in the colon and/or rectum by age 40 in hereditary or younger ages in non-hereditary FAP. [13] Without intervention, one or more of these polyps become cancerous in 100% of FAP cases. Since this cancerous transformation is extremely rare in individuals <20 years old, prophylactic colectomy for FAP is recommended in patients during their late teen years unless other indications (e.g. regular colonoscopy examinations find increasing numbers of polyps, multiple polyps >1 cm, and/or the appearance of polyps with atypical or cancer-like cells) indicate the need for earlier colectomy. [14] Individuals with FAP also bear the risks of developing a wide range of the disease's other disorders such as: stomach and duodenum polyps; nasopharyngeal angiofibromas; hepatoblastomas; brain, pancreas, and biliary tract tumors; and various skin lesions including Gardner fibromas [13] and desmoid tumors. [6] [1] Individuals with FAP should be surveilled regularly for these disorders and, when found, be appropriately treated for them. [14] Patients presenting with GF tumors may have a family history and/or evidence of one or more other manifestations of FAP. However, individuals presenting with GF tumors may have no other signs of FAP until months or years after the initial presentation, i.e. GF tumors may be the first indication that an individual has FAP. [13]

Desmoid tumors may arise sporadically [1] or in 5–10% of cases in association with FAP. [15] In sporadic cases, these tumors occur most frequently in the abdominal wall, intra-abdominal cavity, and limbs. [15] They also arise as natural progressions of GF tumors, [13] that follow trauma to GF tumors, or that recur in surgically removed GF tumors; these progressions are sometimes termed the "GF–DF sequence". [6] DTs that replace GF tumors are benign but typically are rapidly growing, painful, tend to infiltrate into nearby tissues, and after their surgical removal often recur at the surgical sites. Desmoid tumors that are not associated with FAP almost always have tumor cells that express mutations in the CTNNB1 gene. This gene directs the production of catenin beta-1 protein and when mutated in desmoid tumor cells overproduces a fully active product protein that contributes to the unregulated growth of its parent cells. [15]

Individuals presenting with a GF (or DT) should be assessed for the presence of other FAP lesions such as colon and rectal polyps as well as for a family history of FAP and for family members with FAP-like lesions in order to determine if these individuals' GF tumors may or are due to FAP. [9]

Pathology

Microscopic histopathologic examinations of H&E stained GF tumor tissues generally show poorly circumscribed, scarce, bland fibroblasts admixed with dense bundles of collagen (i.e. the predominant structural protein in connective tissue). Slit-like empty spaces and loci of adipose tissue and/or skeletal muscle may also be imbedded in the collagen bundles. [2] Sparse mast cells may be dispersed throughout GF tumors. The outer edges of these tumors may entrap peripheral nerve fibers and blood vessels and may infiltrate into otherwise normal subcutaneous fat tissues. [1] Immunohistochemical examinations show that the tumor cells in GF consistently express CD34 protein. [8] and in two-thirds of cases nuclear β-catenin [2] but not smooth muscle actin or desmin. [9] In one study, all 24 tested cases of GF had tumor cells that expressed nuclear-located cyclin D1 protein and MYC proto-oncogene, bHLH transcription factor protein. [1]

Similar examinations of desmoid tumor tissues reveal a heterogeneous, poorly defined and uniform proliferation of spindle-shaped myofibroblast-like cells (i.e. cells with combine some of the microscopic appearance features of fibroblasts and smooth muscle cells). These cells are embedded within collagen bundles which generally dominate the tumor tissues. Compared to GF tumor tissue, DT tumors are more densely populated by cells and these cells are commonly arrayed in bundles. [3] Unlike GF tumor cells, DT tumor cells do not express CD34 protein [15] and almost always at least partially express smooth muscle actin proteins. [13] Similar to GF tumor cells, desmoid tumor cells express nucleus-located β-catenin in 90% to 95% of cases [13] and do not express desmin. [15] Desmoid tumors cells also usually express vimentin, cytochrome c oxidase subunit II, KIT, PDGFRB, androgen receptor and estrogen receptor beta proteins but not S100, or KIT proteins. [15] In one study, 24% of 104 individuals diagnosed with primary DT tumors and 37% of 122 individuals diagnosed with recurrent DT tumors showed on pathological examination DT areas admixed with adjacent GF areas. Only 4 of these patients had documented FAP. [7]

Diagnosis

The diagnosis of GF depends on: its clinical presentation, i.e. occurrence as solitary plaque-like skin lesions that are located in the dermis of children; patient histories of previously having a GF tumor that was surgically removed; [1] [15] characteristic histopathology findings; [3] tumor cell expressions of CD34 [15] and β-catenin proteins [2] but not smooth muscle actin; [13] and the presence of other lesions associated with FAP, a family history of FAP, and/or family members with a history of FAP-like lesions. [9]

Treatment and prognosis

Isolated Gardner fibromas are commonly treated by surgical resection. [1] [7] However, systematic examinations on the clinical value of this surgery have not been published. In one study of patients with mixed GF-DT tumors, the average time of recurrence after surgical removal was ~2.5 years for tumors located in the legs, arms, or deep soft tissues of the back and chest wall and ~5 years for tumors located in other sites. In this study, individuals with pure desmoid tumors, i.e. tumors with no areas with the histopathology of Gardner tumors, had an averaged recurrence time of >25 years. [7]

Individual cases of highly aggressive, symptomatic, and/or repeatedly recurring tumors diagnosed as DT but likely including GF-DT tumors have been treated with nonsteroidal anti-inflammatory drugs, antiestrogens (e.g. tamoxifen: desmoid tumor cells express estrogen receptors), radiation therapy, tyrosine kinase inhibitors (e.g. imatinib [16] ), and chemotherapy (i.e. multiple drug regimens such as vinblastine combined with methotrexate, doxorubicin combined with dacarbazine, or adriamycin combined with dacarbazine or single drug regimens such as doxorubicin, methotrexate, vinorelbine, or metronomic, i.e. low-dose, long-term treatment, etoposide or cyclophosphamide). [17] These various treatments have had modest success. [16] [18] For example, one study of 62 individuals with DT (likely including GR-DT tumors) had a complete response, partial response, stable disease, and progressive disease in 1, 12, 37, and 12 patients, respectively; median progression-free survival time (i.e. interval between treatment and disease progression) was 40.8 months. [16]

Additional recommendations for individuals diagnosed with Gardner fibromas include: 1) long-term follow-ups to check for recurrent disease and the development of other FAP lesions; [1] 2) genetic counseling; [2] 3) mandatory screening (e.g. colonoscopy) for FAP every 6 [10] or 12 months; [14] and 4) surveillance of the individual's parents, siblings, and children for the presence and development of FAP-associated lesions. [9]

Related Research Articles

<span class="mw-page-title-main">Colorectal cancer</span> Cancer of the colon or rectum

Colorectal cancer (CRC), also known as bowel cancer, colon cancer, or rectal cancer, is the development of cancer from the colon or rectum. Signs and symptoms may include blood in the stool, a change in bowel movements, weight loss, and fatigue. Most colorectal cancers are due to old age and lifestyle factors, with only a small number of cases due to underlying genetic disorders. Risk factors include diet, obesity, smoking, and lack of physical activity. Dietary factors that increase the risk include red meat, processed meat, and alcohol. Another risk factor is inflammatory bowel disease, which includes Crohn's disease and ulcerative colitis. Some of the inherited genetic disorders that can cause colorectal cancer include familial adenomatous polyposis and hereditary non-polyposis colon cancer; however, these represent less than 5% of cases. It typically starts as a benign tumor, often in the form of a polyp, which over time becomes cancerous.

<span class="mw-page-title-main">Polyp (medicine)</span> Abnormal growth of tissue projecting from a mucous membrane

In anatomy, a polyp is an abnormal growth of tissue projecting from a mucous membrane. If it is attached to the surface by a narrow elongated stalk, it is said to be pedunculated; if it is attached without a stalk, it is said to be sessile. Polyps are commonly found in the colon, stomach, nose, ear, sinus(es), urinary bladder, and uterus. They may also occur elsewhere in the body where there are mucous membranes, including the cervix, vocal folds, and small intestine. Some polyps are tumors (neoplasms) and others are non-neoplastic, for example hyperplastic or dysplastic, which are benign. The neoplastic ones are usually benign, although some can be pre-malignant, or concurrent with a malignancy.

<span class="mw-page-title-main">Gardner's syndrome</span> Medical condition

Gardner's syndrome is a subtype of familial adenomatous polyposis (FAP). Gardner syndrome is an autosomal dominant form of polyposis characterized by the presence of multiple polyps in the colon together with tumors outside the colon. The extracolonic tumors may include osteomas of the skull, thyroid cancer, epidermoid cysts, fibromas, as well as the occurrence of desmoid tumors in approximately 15% of affected individuals.

<span class="mw-page-title-main">Familial adenomatous polyposis</span> Medical condition

Familial adenomatous polyposis (FAP) is an autosomal dominant inherited condition in which numerous adenomatous polyps form mainly in the epithelium of the large intestine. While these polyps start out benign, malignant transformation into colon cancer occurs when they are left untreated. Three variants are known to exist, FAP and attenuated FAP are caused by APC gene defects on chromosome 5 while autosomal recessive FAP is caused by defects in the MUTYH gene on chromosome 1. Of the three, FAP itself is the most severe and most common; although for all three, the resulting colonic polyps and cancers are initially confined to the colon wall. Detection and removal before metastasis outside the colon can greatly reduce and in many cases eliminate the spread of cancer.

<span class="mw-page-title-main">Fibromatosis</span> Medical condition

The term fibromatosis refers to a group of soft tissue tumors which have certain characteristics in common, including absence of cytologic and clinical malignant features, a histology consistent with proliferation of well-differentiated fibroblasts, an infiltrative growth pattern, and aggressive clinical behavior with frequent local recurrence. It is classed by the World Health Organization as an intermediate soft tissue tumor related to the sarcoma family.

<span class="mw-page-title-main">Benign tumor</span> Mass of cells which cannot spread throughout the body

A benign tumor is a mass of cells (tumor) that does not invade neighboring tissue or metastasize. Compared to malignant (cancerous) tumors, benign tumors generally have a slower growth rate. Benign tumors have relatively well differentiated cells. They are often surrounded by an outer surface or stay contained within the epithelium. Common examples of benign tumors include moles and uterine fibroids.

<span class="mw-page-title-main">Hepatoblastoma</span> Liver cancer occurring in infants and children

Hepatoblastoma is a malignant liver cancer occurring in infants and children and composed of tissue resembling fetal liver cells, mature liver cells, or bile duct cells. They usually present with an abdominal mass. The disease is most commonly diagnosed during a child's first three years of life. Alpha-fetoprotein (AFP) levels are commonly elevated, but when AFP is not elevated at diagnosis the prognosis is poor.

<span class="mw-page-title-main">Adenomatous polyposis coli</span> Protein-coding gene in the species Homo sapiens

Adenomatous polyposis coli (APC) also known as deleted in polyposis 2.5 (DP2.5) is a protein that in humans is encoded by the APC gene. The APC protein is a negative regulator that controls beta-catenin concentrations and interacts with E-cadherin, which are involved in cell adhesion. Mutations in the APC gene may result in colorectal cancer.

<span class="mw-page-title-main">Fundic gland polyposis</span> Medical condition

Fundic gland polyposis is a medical syndrome where the fundus and the body of the stomach develop many fundic gland polyps. The condition has been described both in patients with familial adenomatous polyposis (FAP) and attenuated variants (AFAP), and in patients in whom it occurs sporadically.

<span class="mw-page-title-main">Aggressive fibromatosis</span> Medical condition

Aggressive fibromatosis or desmoid tumor is a rare condition. Desmoid tumors arise from cells called fibroblasts, which are found throughout the body and provide structural support, protection to the vital organs, and play a critical role in wound healing. These tumors tend to occur in women in their thirties, but can occur in anyone at any age. They can be either relatively slow-growing or malignant. However, aggressive fibromatosis is locally aggressive and can cause life-threatening problems or even death when they compress vital organs such as intestines, kidneys, lungs, blood vessels, or nerves. Most cases are sporadic, but some are associated with familial adenomatous polyposis (FAP). Approximately 10% of individuals with Gardner's syndrome, a type of FAP with extracolonic features, have desmoid tumors.

<span class="mw-page-title-main">Catenin beta-1</span> Mammalian protein found in Homo sapiens

Catenin beta-1, also known as beta-catenin (β-catenin), is a protein that in humans is encoded by the CTNNB1 gene.

<span class="mw-page-title-main">CTNNBIP1</span> Protein-coding gene in the species Homo sapiens

Beta-catenin-interacting protein 1 is a protein that is encoded in humans by the CTNNBIP1 gene.

<span class="mw-page-title-main">Colorectal polyp</span> Growth found in bowel wall

A colorectal polyp is a polyp occurring on the lining of the colon or rectum. Untreated colorectal polyps can develop into colorectal cancer.

Mouse models of colorectal cancer and intestinal cancer are experimental systems in which mice are genetically manipulated, fed a modified diet, or challenged with chemicals to develop malignancies in the gastrointestinal tract. These models enable researchers to study the onset, progression of the disease, and understand in depth the molecular events that contribute to the development and spread of colorectal cancer. They also provide a valuable biological system, to simulate human physiological conditions, suitable for testing therapeutics.

Infantile digital fibromatosis (IDF), also termed inclusion body fibromatosis, Reye tumor, or Reye's tumor, usually occurs as a single, small, asymptomatic, nodule in the dermis on a finger or toe of infants and young children. IMF is a rare disorder with approximately 200 cases reported in the medical literature as of 2021. The World Health Organization, 2020, classified these nodules as a specific benign tumor type in the category of fibroblastic and myofibroblastic tumors. IDF was first described by the Australian pathologist, Douglas Reye, in 1965.

Diffuse infantile fibromatosis is a rare condition affecting infants during the first 3 years of life. This condition is a multicentric infiltration of muscle fibers with fibroblasts resembling those seen in aponeurotic fibromas, presenting as lesions and tumors confined usually to the muscles of the arms, neck, and shoulder area Diffuse infantile fibromatosis is characterized by fast growing benign tumors. This disorder is known to be caused by mutations in germline variants, PDGFRB and NOTCH3, which may be generationally-inherited through autosomal dominant and recessive traits. Although diffuse infantile fibromatosis is classified as benign tumors, it can still lead to life-threatening complications and damage other organs.

Nuchal-type fibroma is a rare benign proliferation involving the dermis and subcutaneous tissues, that is a collection of dense, hypocellular bundles of collagen with entrapped adipocytes and increased numbers of small nerves. It is no longer called a nuchal fibroma, but instead a "nuchal-type fibroma" since it develops in other anatomic sites. There is no known etiology. The World Health Organization, 2020, classified nuchal fibromas as a specific tumor form in the category of benign fibroblastic and myofibroblastic tumors.

<span class="mw-page-title-main">Mammary-type myofibroblastoma</span> Medical condition

Mammary-type myofibroblastoma (MFB), also named mammary and extramammary myofibroblastoma, was first termed myofibrolastoma of the breast, or, more simply, either mammary myofibroblastoma (MMFB) or just myofibroblastoma. The change in this terminology occurred because the initial 1987 study and many subsequent studies found this tumor only in breast tissue. However, a 2001 study followed by numerous reports found tumors with the microscopic histopathology and other key features of mammary MFB in a wide range of organs and tissues. Further complicating the issue, early studies on MFB classified it as one of various types of spindle cell tumors that, except for MFB, were ill-defined. These other tumors, which have often been named interchangeably in different reports, are: myelofibroblastoma, benign spindle cell tumor, fibroma, spindle cell lipoma, myogenic stromal tumor, and solitary stromal tumor. Finally, studies suggest that spindle cell lipoma and cellular angiofibroma are variants of MFB. Here, the latter two tumors are tentatively classified as MFB variants but otherwise MFB is described as it is more strictly defined in most recent publications. The World Health Organization, 2020, classified mammary type myofibroblastoma tumors and myofibroblastoma tumors as separate tumor forms within the category of fibroblastic and myofibroblastic tumors.

<span class="mw-page-title-main">Apc, wnt signaling pathway regulator</span> Mammalian protein found in Homo sapiens

APC, WNT signaling pathway regulator is a protein that in humans is encoded by the APC gene.

Fibroblastic and myofibroblastic tumors (FMTs) develop from the mesenchymal stem cells which differentiate into fibroblasts and/or the myocytes/myoblasts that differentiate into muscle cells. FMTs are a heterogeneous group of soft tissue neoplasms. The World Health Organization (2020) defined tumors as being FMTs based on their morphology and, more importantly, newly discovered abnormalities in the expression levels of key gene products made by these tumors' neoplastic cells. Histopathologically, FMTs consist of neoplastic connective tissue cells which have differented into cells that have microscopic appearances resembling fibroblasts and/or myofibroblasts. The fibroblastic cells are characterized as spindle-shaped cells with inconspicuous nucleoli that express vimentin, an intracellular protein typically found in mesenchymal cells, and CD34, a cell surface membrane glycoprotein. Myofibroblastic cells are plumper with more abundant cytoplasm and more prominent nucleoli; they express smooth muscle marker proteins such as smooth muscle actins, desmin, and caldesmon. The World Health Organization further classified FMTs into four tumor forms based on their varying levels of aggressiveness: benign, intermediate, intermediate, and malignant.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Coffin CM, Hornick JL, Zhou H, Fletcher CD (March 2007). "Gardner fibroma: a clinicopathologic and immunohistochemical analysis of 45 patients with 57 fibromas". The American Journal of Surgical Pathology. 31 (3): 410–6. doi:10.1097/01.pas.0000213348.65014.0a. PMID   17325483. S2CID   25831659.
  2. 1 2 3 4 5 6 7 8 Baranov E, Hornick JL (March 2020). "Soft Tissue Special Issue: Fibroblastic and Myofibroblastic Neoplasms of the Head and Neck". Head and Neck Pathology. 14 (1): 43–58. doi:10.1007/s12105-019-01104-3. PMC   7021862 . PMID   31950474.
  3. 1 2 3 4 5 6 7 Goldstein JA, Cates JM (July 2015). "Differential diagnostic considerations of desmoid-type fibromatosis". Advances in Anatomic Pathology. 22 (4): 260–6. doi:10.1097/PAP.0000000000000077. PMID   26050263. S2CID   3388912.
  4. 1 2 Manappallil RG, Nambiar H, Mampilly N, Harigovind D (December 2019). "Superior vena cava syndrome due to mediastinal Gardner fibroma presenting as syncope". BMJ Case Reports. 12 (12): e232433. doi:10.1136/bcr-2019-232433. PMC   6904175 . PMID   31806632.
  5. Sbaraglia M, Bellan E, Dei Tos AP (April 2021). "The 2020 WHO Classification of Soft Tissue Tumours: news and perspectives". Pathologica. 113 (2): 70–84. doi:10.32074/1591-951X-213. PMC   8167394 . PMID   33179614.
  6. 1 2 3 4 5 Bakker A, Slack JC, Caragea M, Kurek KC, Bründler MA (2021). "Adipocyte-rich CTNNB1-mutated Intramuscular Gardner Fibroma Progressing to Desmoid Fibromatosis". Pediatric and Developmental Pathology. 24 (1): 62–67. doi: 10.1177/1093526620968807 . PMID   33104413.
  7. 1 2 3 4 Cates JM, Stricker TP, Sturgeon D, Coffin CM (October 2014). "Desmoid-type fibromatosis-associated Gardner fibromas: prevalence and impact on local recurrence". Cancer Letters. 353 (2): 176–81. doi:10.1016/j.canlet.2014.07.020. PMID   25064609.
  8. 1 2 Dahl NA, Sheil A, Knapke S, Geller JI (July 2016). "Gardner Fibroma: Clinical and Histopathologic Implications of Germline APC Mutation Association". Journal of Pediatric Hematology/Oncology. 38 (5): e154–7. doi:10.1097/MPH.0000000000000493. PMID   26840078. S2CID   40473308.
  9. 1 2 3 4 5 6 7 8 9 Coffin CM, Davis JL, Borinstein SC (January 2014). "Syndrome-associated soft tissue tumours". Histopathology. 64 (1): 68–87. doi:10.1111/his.12280. PMID   24236688. S2CID   5166124.
  10. 1 2 Chokoeva AA, Patterson JW, Tchernev G (December 2017). "Giant Subcutaneous Solitary Gardner Fibroma of the Head of a Bulgarian Child". The American Journal of Dermatopathology. 39 (12): 950–952. doi: 10.1097/DAD.0000000000000787 . PMID   27805922.
  11. Pinto RS, Simons A, Verma R, Bateman N (September 2018). "Gardener-associated fibroma: an unusual cause of upper airway obstruction". BMJ Case Reports. 2018. doi:10.1136/bcr-2018-225079. PMC   6169644 . PMID   30269086.
  12. Bugter JM, Fenderico N, Maurice MM (October 2020). "Mutations and mechanisms of WNT pathway tumour suppressors in cancer". Nature Reviews. Cancer. 21 (1): 5–21. doi:10.1038/s41568-020-00307-z. PMID   33097916. S2CID   225058221.
  13. 1 2 3 4 5 6 7 8 Dinarvand P, Davaro EP, Doan JV, Ising ME, Evans NR, Phillips NJ, Lai J, Guzman MA (November 2019). "Familial Adenomatous Polyposis Syndrome: An Update and Review of Extraintestinal Manifestations". Archives of Pathology & Laboratory Medicine. 143 (11): 1382–1398. doi: 10.5858/arpa.2018-0570-RA . PMID   31070935.
  14. 1 2 3 Stanich PP, Sullivan B, Kim AC, Kalady MF (January 2022). "Endoscopic Management and Surgical Considerations for Familial Adenomatous Polyposis". Gastrointestinal Endoscopy Clinics of North America. 32 (1): 113–130. doi:10.1016/j.giec.2021.08.007. ISSN   1052-5157. PMID   34798980. S2CID   244365942.
  15. 1 2 3 4 5 6 7 8 Garcia-Ortega DY, Martín-Tellez KS, Cuellar-Hubbe M, Martínez-Said H, Álvarez-Cano A, Brener-Chaoul M, Alegría-Baños JA, Martínez-Tlahuel JL (July 2020). "Desmoid-Type Fibromatosis". Cancers. 12 (7): 1851. doi: 10.3390/cancers12071851 . PMC   7408653 . PMID   32660036.
  16. 1 2 3 Garbay D, Le Cesne A, Penel N, Chevreau C, Marec-Berard P, Blay JY, Debled M, Isambert N, Thyss A, Bompas E, Collard O, Salas S, Coindre JM, Bui B, Italiano A (January 2012). "Chemotherapy in patients with desmoid tumors: a study from the French Sarcoma Group (FSG)". Annals of Oncology. 23 (1): 182–186. doi: 10.1093/annonc/mdr051 . PMID   21444357.
  17. Conroy EM, Frimer M, Karabakhtsian RG, Gorlick R, Goldberg GL (January 2015). "Vulvar fibromatosis: a clinical enigma". Journal of Pediatric Hematology/Oncology. 37 (1): 63–7. doi:10.1097/MPH.0000000000000261. PMID   25238226. S2CID   7168377.
  18. Mullen JT, Delaney TF, Kobayashi WK, Szymonifka J, Yeap BY, Chen YL, Rosenberg AE, Harmon DC, Choy E, Yoon SS, Raskin KA, Petur Nielsen G, Hornicek FJ (December 2012). "Desmoid tumor: analysis of prognostic factors and outcomes in a surgical series". Annals of Surgical Oncology. 19 (13): 4028–35. doi:10.1245/s10434-012-2638-2. PMID   22965569. S2CID   26047281.