The exposed strata at the surface in and around Wichita Falls are the products of one ancient period of deposition with a modest amount of recent and modern alteration. In all cases, the strata are products of terrigenous (non-marine) environments dominated by fluvial depositional and erosional systems (rivers and streams).
The rocks found in and around Wichita Falls result from southwesterly-flowing Permian streams that deposited sands in channels and silts and clays on the surrounding floodplains. Calcium-carbonate rich soils concurrently developed adjacent to these streams. These were likely buried by further Permian sedimentation and then lithified. Pleistocene erosion removed the younger rocks, exposing the current strata. Exposures of sediments indicate that northeast-flowing streams locally deposited silts, clays, sands, and some gravels on the Permian rocks. These are subsequently modified by modern (Holocene) stream erosion and deposition.
In the Permian geologic period, North-Central Texas was a part of the western coastal zone of equatorial Pangea, a super-continental land mass. [1] Nearby uplifts and mountainous regions, such as the Muenster Arch and Red River Uplift, the Wichita, Arbuckle, and Ouachita mountains developed by the end of the Pennsylvanian, [2] providing elevated topography to the north and east during the Permian. The rocks of the Permian Basin of West Texas record a contemporaneous shallow inland sea. The resulting topography provided northeast-to-southwest gradients for stream flow and sediment movement. The sediments deposited by the Permian streams of North-Central Texas were likely reworked clastic materials from Middle Pennsylvanian stream and fan-delta sediments proximal to the Ouachita foldbelt and Muenster Highlands. [3]
The Petrolia Formation (of the Late Wolfcampian-Leonardian systems) dominates the exposed Permian strata in Wichita falls, as mapped by the 1987 Texas Atlas of Geology. [4] The map describes the formation as 360–400 feet of weakly or unstratified mudstone with laminated, cross-bedded sandstone lenses. The formation increases in mudstone content upsection. Sandstone lenses contain terrestrial fossils of plants, vertebrates, and footprints. The unit contains calcareous nodules of varying sizes as well as poorly indurated "conglomerate" with vertebrate fossils. In general the entire package is only weakly lithified, perhaps indicating that the region was not appreciably covered by a thick package of younger strata.
Several correlated sandstone units crop out in the immediate region. These dominate the region adjacent to the Seymour Highway, on the slopes to the south of the Wichita River (locally known as "the bluffs"). The Texas Atlas of Geology mapped these as ss6. [4] Most outcrops are buff-colored, medium-grained, well-sorted quartzose sandstones. These exhibit extensive cross-bedding and soft-sediment deformation features. Some deposits are friable, others well cemented. Locally, there appears to be three prominent layers of sandstone separated by mudstone. Because of variable erosion rates, each influences topography by forming ledges and benches, and in places may form mesa-like landforms. In and around the city, these occur roughly at 960, 1000, and 1060 feet above sea level.
Up to 30 feet of fluvial deposits of unconsolidated gravel, sand, and silt mapped as terrace deposition by the 1987 Texas Atlas of Geology. [4] Gravels are granule-to-cobble size, with clasts of angular to well-rounded quartzite, quartz, and chert from distal sources and lesser fragments of local strata. The sands are orange-brown to tan, fine- to coarse-grained with preserved soils.
Up to 30 feet of floodplain and channel sand, silt, clay, and gravel from the modern stream systems. This includes terrace deposits near floodplain, colluvium on valley slopes, and local wind-blown sand and silt. [4]
The region is largely underlain with shallowly west-dipping strata, but a significant uplifted block is found in the subsurface immediately north of Wichita Falls. This block, locally known as the Red River uplift, may be part of an uplifted system that extends eastward, joining the Muenster Arch. The uplifts offset Pennsylvanian and older strata in the subsurface and are thought to be contemporaneous with the Ouachita and Ancestral Rocky Orogenies. These Pennsylvanian orogenies resulted from the closure of the Iapetus ocean as the Gondwana and Laurentia continents collided to form Pangea.
Petroleum resources were discovered in the region in the early 1900s, and the area remains a locus of exploration and production.
Groundwater in Wichita Falls is drawn from the Seymour aquifer or from alluvial aquifers associated with local streams. [5] Groundwater withdrawals are limited to individual property owners and do not feed into the municipal supply for the city of Wichita Falls. However, the nearby city of Burkburnett, located 15 miles north of (and down hydraulic gradient from) Wichita Falls relies in part on this aquifer for municipal supply. [6]
The Seymour aquifer may be locally confined under clay-rich soils and sediments. In the southern part of the city, the distribution and nature of the aquifer is consistent with one hosted by Pleistocene and/or Holocene fluvial channel deposits. The depth to water (hydrostatic head) averages 14 feet below the surface, closely correlated with topography. The water is likely sourced in coarse sands and gravels 10-19' below the surface. Dry holes in this same area contain no typically sand-gravel layers within the first 22 feet. The horizontal distribution of this shallow aquifer is irregular; dry holes may be adjacent to those with water yields. [6]
Seymour aquifer groundwater once fed the Cedar Springs Pools, a popular recreational public swimming facility in the 1930s and 40s. The two pools were located between Taft Boulevard and Robin Lane north of Hampstead Rd. in the southern part of Wichita Falls. Long-time residents have vivid memoirs of the frigid waters in these ponds. [6]
Wichita Falls is located along the Wichita River roughly 25 miles southwest of its confluence with the Red River. The river essentially bisects the city into north and south. The river exhibits many of the classic morphological features associated with meandering streams; Lucy Park, an expansive city green space, occupies a large meander bend near downtown and the Tanglewood subdivision surrounds an oxbow lake. The upstream waters of the Wichita River are impounded for flood control and reservoir capacity.
Lake Diversion was impounded in 1924 in northwest Archer and northeast Baylor counties, 71 miles upstream from Wichita Falls. Lake Diversion sits at an elevation of 1,053 feet above sea level, has a surface area of 3,133 acres, and a maximum depth of 35 feet. The lake serves to alleviate flooding, and a source of water for the Dundee fish hatchery, and as an irrigation source, feeding a 135-mile network of irrigation canals that extend to the east side of Wichita Falls (Wichita County Water Improvement District #2). [7]
Located 8 miles north of Seymour in Baylor County and 40 miles upstream of Wichita Falls, Lake Kemp was developed in 1924 to alleviate persistent flooding issues downstream and to provide irrigation and drinking water for the city and the adjacent farming areas. The elevation of Lake Kemp is 1,142 feet asl and contains 245,308 acre feet (80 billion gallons) at its maximum capacity. The lake has 100 miles of shoreline, some of which is used for housing and recreation. [8]
Lake Kemp was used as a source of drinking water through the 1950s but lost popularity because of its gypsum taste. In 2008, the City of Wichita Falls began reverse osmosis water treatment and is now processing water from Lake Kemp through this desalination system [9] Additionally, Lake Kemp provides water to the American Electric Power Company in Oklaunion, Texas. Lake Kemp is named for entrepreneur Joseph A. Kemp. [6]
Lake Kemp is the location where the Internet viral video titled "Failed Dock Jump Attempt" was filmed. [10] This video was featured on G4tv's Attack of the Show [11]
Truscott Brine Lake was completed in 1987 by the Army Corps of Engineers, Tulsa District. [12] The lake covers a surface area of 3,146 acres with 24 miles of shoreline. The lake has a normal storage of 107,000 acre-feet, a maximum capacity of 116,200 acre-feet of water with a maximum discharge rate of 35,400 cubic feet per second. The lake drains a 26-square mile area. [13]
This project is aimed at controlling chloride and other salinity components in the Wichita River watershed. There are naturally occurring salt springs in the area. The salt springs result from the percolation of groundwater through Permian strata rich in evaporite minerals. [12]
Authorized in 1974, and completed in 1987, a 5-foot tall inflatable collection dam was constructed across the South Wichita River near Guthrie, Texas. During low flow periods, this salty water is piped 23 miles to Truscott Brine Lake, where the water is contained for eventual evaporation. [12] An additional low-water inflatable dam has been installed on the Middle Fork of the Wichita River, but a pipeline to Truscott Lake has not yet been completed. [14]
Holliday Creek is a tributary to the Wichita River that originates south of Dundee in Archer County, Texas, to the north edge of Wichita Falls. It is impounded at the southern edge of Wichita Falls to form Lake Wichita. [15]
Located on the southern edge of the city limits, partly in Wichita County and partly in Archer County, this lake at 971 feet above sea level was developed in 1901 by the entrepreneur Frank Kell, his brother-in-law Joseph Kemp, and the Lake Wichita Irrigation and Water Company to alleviate flooding and provide irrigation water for local farms and municipal water for Wichita Falls. The lake is recharged from the Holliday Creek watershed and from irrigation conduits from Lake Diversion. The original lake covered 2,200 acres with a maximum capacity of 14,000 acre-feet of water. In 1995, the city constructed a new spillway that was 4.7 feet lower than the previous spillway. [16] as part a flood control project on Holliday Creek. [15] The current lake now covers 1,224 acres to a maximum depth of 8 feet at its deepest spot. Because of its shallow nature, this lake is currently only used for recreation and not as a municipal reservoir. [17]
The Little Wichita River is a near-parallel drainage system to the south of Wichita River and a tributary to the Red River, emptying into the Red about 20 miles downstream of the Wichita River. The Little Wichita River drains the regions to the south and east of the Wichita Falls city limits, and its waters are impounded in two lakes that feed the Wichita Falls municipal water system.
This lower lake in the Little Wichita River watershed is located 15 miles southeast of Wichita Falls on the western edge of Clay County. The most recently built of the region's large reservoirs, it was impounded in 1965 following a prolonged legal battle and the eventual relocation of the residents (living and deceased) of Halsell, Texas. It has a drainage area of 832 square miles, a maximum capacity of 228,000 acre-feet (74 billion gallons), and sits at 926 feet above sea level [18] Wichita Falls is authorized by the Texas Water Development Board to utilize up to 45,000 acre-feet of water annually for municipal purposes [19]
This upper lake on the Little Wichita River watershed is located approximately 18 miles southwest of Wichita Falls, in Archer County. Constructed in 1945, the lake is at an elevation of 1,014 feet above sea level, has a surface area of 6,200 acres, and has a maximum capacity of 106,000 acre feet (35 billion gallons). [20]
Lake Ringgold is a proposed reservoir site on the Little Wichita River near the city of Henrietta with a potential of 27,000 acre-feet per year by 2050 to provide 77,003 acre-feet of additional water storage by the year 2060. The total capital costs to develop this additional water resource are $383 million. [21]
Lake Kickapoo is a reservoir located on the North Fork Little Wichita River in the Red River Basin of Archer County, Texas. It is neighbored by Archer City, Texas and Wichita Falls, Texas which reside within the Central Great Plains ecoregion.
The Kansas River, also known as the Kaw, is a meandering river in northeastern Kansas in the United States. It is potentially the southwestern most part of the Missouri River drainage, which is sometimes in turn the northwesternmost portion of the extensive Mississippi River drainage. Its two names both come from the Kanza (Kaw) people who once inhabited the area; Kansas was one of the anglicizations of the French transcription Cansez of the original kką:ze. The city of Kansas City, Missouri, was named for the river, as was later the state of Kansas.
The Permian Basin is a large sedimentary basin in the southwestern part of the United States. It is the highest producing oil field in the United States, producing an average of 4.2 million barrels of crude oil per day in 2019. This sedimentary basin is located in western Texas and southeastern New Mexico.
The Llano Uplift is a geologically ancient, low geologic dome that is about 90 miles (140 km) in diameter and located mostly in Llano, Mason, San Saba, Gillespie, and Blanco counties, Texas. It consists of an island-like exposure of Precambrian igneous and metamorphic rocks surrounded by outcrops of Paleozoic and Cretaceous sedimentary strata. At their widest, the exposed Precambrian rocks extend about 65 miles (105 km) westward from the valley of the Colorado River and beneath a broad, gentle topographic basin drained by the Llano River. The subdued topographic basin is underlain by Precambrian rocks and bordered by a discontinuous rim of flat-topped hills. These hills are the dissected edge of the Edwards Plateau, which consist of overlying Cretaceous sedimentary strata. Within this basin and along its margin are down-faulted blocks and erosional remnants of Paleozoic strata which form prominent hills.
The geology of the Grand Canyon area includes one of the most complete and studied sequences of rock on Earth. The nearly 40 major sedimentary rock layers exposed in the Grand Canyon and in the Grand Canyon National Park area range in age from about 200 million to nearly 2 billion years old. Most were deposited in warm, shallow seas and near ancient, long-gone sea shores in western North America. Both marine and terrestrial sediments are represented, including lithified sand dunes from an extinct desert. There are at least 14 known unconformities in the geologic record found in the Grand Canyon.
The geology of the Zion and Kolob canyons area includes nine known exposed formations, all visible in Zion National Park in the U.S. state of Utah. Together, these formations represent about 150 million years of mostly Mesozoic-aged sedimentation in that part of North America. Part of a super-sequence of rock units called the Grand Staircase, the formations exposed in the Zion and Kolob area were deposited in several different environments that range from the warm shallow seas of the Kaibab and Moenkopi formations, streams and lakes of the Chinle, Moenave, and Kayenta formations to the large deserts of the Navajo and Temple Cap formations and dry near shore environments of the Carmel Formation.
The geology of the Grand Teton area consists of some of the oldest rocks and one of the youngest mountain ranges in North America. The Teton Range, partly located in Grand Teton National Park, started to grow some 9 million years ago. An older feature, Jackson Hole, is a basin that sits aside the range.
The Wichita Mountains are located in the southwestern portion of the U.S. state of Oklahoma. It is the principal relief system in the Southern Oklahoma Aulacogen, being the result of a failed continental rift. The mountains are a northwest-southeast trending series of rocky promontories, many capped by 500 million-year old granite. These were exposed and rounded by weathering during the Pennsylvanian and Permian Periods. The eastern end of the mountains offers 1,000 feet (305 m) of topographic relief in a region otherwise dominated by gently rolling grasslands.
Texas contains a wide variety of geologic settings. The state's stratigraphy has been largely influenced by marine transgressive-regressive cycles during the Phanerozoic, with a lesser but still significant contribution from late Cenozoic tectonic activity, as well as the remnants of a Paleozoic mountain range.
The geography of Texas is diverse and large. Occupying about 7% of the total water and land area of the U.S., it is the second largest state after Alaska, and is the southernmost part of the Great Plains, which end in the south against the folded Sierra Madre Oriental of Mexico. Texas is in the South Central United States of America, and is considered to form part of the U.S. South and also part of the U.S. Southwest.
The Geology of Pennsylvania consists of six distinct physiographic provinces, three of which are subdivided into different sections. Each province has its own economic advantages and geologic hazards and plays an important role in shaping everyday life in the state. From the southeast corner to the northwest corner of the state, they include: the Atlantic Plain Province, the Piedmont Province, the New England Province, the Ridge and Valley Province, the Appalachain Province, and the Central Lowlands Province.
The geology of Kansas encompasses the geologic history and the presently exposed rock and soil. Rock that crops out in the US state of Kansas was formed during the Phanerozoic eon, which consists of three geologic eras: the Paleozoic, Mesozoic and Cenozoic. Paleozoic rocks at the surface in Kansas are primarily from the Mississippian, Pennsylvanian, and Permian periods.
The Paradox Basin is an asymmetric foreland basin located mostly in southeast Utah and southwest Colorado, but extending into northeast Arizona and northwest New Mexico. The basin is a large elongate northwest to southeast oriented depression formed during the late Paleozoic Era. The basin is bordered on the east by the tectonically uplifted Uncompahgre Plateau, on the northwest by the San Rafael Swell and extends partway into the Monument Uplift to the west.
Salmon Falls Creek is a tributary of the Snake River, flowing from northern Nevada into Idaho in the United States. Formed in high mountains at the northern edge of the Great Basin, Salmon Falls Creek flows northwards 121 miles (195 km), draining an arid and mountainous basin of 2,103 square miles (5,450 km2). The Salmon Falls Creek valley served as a trade route between the Native American groups of the Snake River Plain and Great Basin. Today, most of its water is used for irrigation.
Stony Creek is a 73.5-mile (118.3 km)-long tributary of the Sacramento River in Northern California. It drains a watershed of more than 700 square miles (1,800 km2) on the west side of the Sacramento Valley in Glenn, Colusa, Lake and Tehama Counties.
The Yuba–Bear Hydroelectric Project is a complex hydroelectric scheme in the northern Sierra Nevada in California, tapping the upper Yuba River and Bear River drainage basins. The project area encompasses approximately 400 square miles (1,000 km2) in Nevada, Placer, and Sierra Counties. Owned by the Nevada Irrigation District, it consists of 16 storage dams plus numerous diversion and regulating dams, and four generating stations producing 425 million kilowatt hours of electricity each year. The Yuba–Bear Hydroelectric Project consists of the Bowman development, Dutch Flat No. 2 development, Chicago Park development, and Rollins development.
The geology of Nebraska is part of the broader geology of the Great Plains of the central United States. Nebraska's landscape is dominated by surface features, soil and aquifers in loosely compacted sediments, with areas of the state where thick layers of sedimentary rock outcrop. Nebraska's sediments and sedimentary rocks lie atop a basement of crystalline rock known only through drilling.
The geology of Ohio formed beginning more than one billion years ago in the Proterozoic eon of the Precambrian. The igneous and metamorphic crystalline basement rock is poorly understood except through deep boreholes and does not outcrop at the surface. The basement rock is divided between the Grenville Province and Superior Province. When the Grenville Province crust collided with Proto-North America, it launched the Grenville orogeny, a major mountain building event. The Grenville mountains eroded, filling in rift basins and Ohio was flooded and periodically exposed as dry land throughout the Paleozoic. In addition to marine carbonates such as limestone and dolomite, large deposits of shale and sandstone formed as subsequent mountain building events such as the Taconic orogeny and Acadian orogeny led to additional sediment deposition. Ohio transitioned to dryland conditions in the Pennsylvanian, forming large coal swamps and the region has been dryland ever since. Until the Pleistocene glaciations erased these features, the landscape was cut with deep stream valleys, which scoured away hundreds of meters of rock leaving little trace of geologic history in the Mesozoic and Cenozoic.
The geology of South Dakota began to form more than 2.5 billion years ago in the Archean eon of the Precambrian. Igneous crystalline basement rock continued to emplace through the Proterozoic, interspersed with sediments and volcanic materials. Large limestone and shale deposits formed during the Paleozoic, during prevalent shallow marine conditions, followed by red beds during terrestrial conditions in the Triassic. The Western Interior Seaway flooded the region, creating vast shale, chalk and coal beds in the Cretaceous as the Laramide orogeny began to form the Rocky Mountains. The Black Hills were uplifted in the early Cenozoic, followed by long-running periods of erosion, sediment deposition and volcanic ash fall, forming the Badlands and storing marine and mammal fossils. Much of the state's landscape was reworked during several phases of glaciation in the Pleistocene. South Dakota has extensive mineral resources in the Black Hills and some oil and gas extraction in the Williston Basin. The Homestake Mine, active until 2002, was a major gold mine that reached up to 8000 feet underground and is now used for dark matter and neutrino research.
The geology of North Dakota includes thick sequences oil and coal bearing sedimentary rocks formed in shallow seas in the Paleozoic and Mesozoic, as well as terrestrial deposits from the Cenozoic on top of ancient Precambrian crystalline basement rocks. The state has extensive oil and gas, sand and gravel, coal, groundwater and other natural resources.