Glycine N-carboxyanhydride

Last updated
Glycine N-carboxyanhydride
GlyNCA.svg
Names
Preferred IUPAC name
1,3-Oxazolidine-2,5-dione
Other names
glycine N-carboxyanhydride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.016.882 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 218-570-6
PubChem CID
UNII
  • InChI=1S/C3H3NO3/c5-2-1-4-3(6)7-2/h1H2,(H,4,6)
    Key: ARAFEULRMHFMDE-UHFFFAOYSA-N
  • C1C(=O)OC(=O)N1
Properties
C3H3NO3
Molar mass 101.061 g·mol−1
Appearancewhite solid
Density 1.74 g/cm3 [1]
Melting point 96–98 [2]  °C (205–208 °F; 369–371 K)
Hazards
GHS labelling: [3]
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H315, H318, H335
P261, P264, P264+P265, P271, P280, P302+P352, P304+P340, P305+P354+P338, P317, P319, P321, P332+P317, P362+P364, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Glycine N-carboxyanhydride is an organic compound with the formula HNCH(CO)2O. A colorless solid, it is the product of the phosgenation of glycine. [4] [5] Glycine N-carboxyanhydride is the simplest member of the amino acid N-carboxyanhydrides. It is also the parent of the 2,5-oxazolidinedione family of heterocycles.

Contents

Other derivatives

2,5-Oxazolidinediones can also be prepared from Schiff base derivatives of amino acids. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Amino acid</span> Organic compounds containing amine and carboxylic groups

Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the α-amino acids, from which proteins are composed. Only 22 α-amino acids appear in the genetic code of all life.

<span class="mw-page-title-main">Alpha helix</span> Type of secondary structure of proteins

An alpha helix is a sequence of amino acids in a protein that are twisted into a coil.

<span class="mw-page-title-main">Glycine</span> Amino acid

Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid (carbamic acid is unstable), with the chemical formula NH2CH2‐COOH. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG (GGU, GGC, GGA, GGG). Glycine is integral to the formation of alpha-helices in secondary protein structure due to its compact form. For the same reason, it is the most abundant amino acid in collagen triple-helices. Glycine is also an inhibitory neurotransmitter – interference with its release within the spinal cord (such as during a Clostridium tetani infection) can cause spastic paralysis due to uninhibited muscle contraction.

<span class="mw-page-title-main">Threonine</span> Amino acid

Threonine is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, a carboxyl group, and a side chain containing a hydroxyl group, making it a polar, uncharged amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Threonine is synthesized from aspartate in bacteria such as E. coli. It is encoded by all the codons starting AC.

<span class="mw-page-title-main">Sarcosine</span> Chemical compound

Sarcosine, also known as N-methylglycine, or monomethylglycine, is a amino acid with the formula CH3N(H)CH2CO2H. It exists at neutral pH as the zwitterion CH3N+(H)2CH2CO2, which can be obtained as a white, water-soluble powder. Like some amino acids, sarcosine converts to a cation at low pH and an anion at high pH, with the respective formulas CH3N+(H)2CH2CO2H and CH3N(H)CH2CO2. Sarcosine is a close relative of glycine, with a secondary amine in place of the primary amine.

<span class="mw-page-title-main">Dipeptide</span> Shortest peptide molecule, containing two amino acids joined by a single peptide bond

A dipeptide is an organic compound derived from two amino acids. The constituent amino acids can be the same or different. When different, two isomers of the dipeptide are possible, depending on the sequence. Several dipeptides are physiologically important, and some are both physiologically and commercially significant. A well known dipeptide is aspartame, an artificial sweetener.

<span class="mw-page-title-main">Emil Fischer</span> German chemist (1852–1919)

Hermann Emil Louis Fischer was a German chemist and 1902 recipient of the Nobel Prize in Chemistry. He discovered the Fischer esterification. He also developed the Fischer projection, a symbolic way of drawing asymmetric carbon atoms. He also hypothesized lock and key mechanism of enzyme action. He never used his first given name, and was known throughout his life simply as Emil Fischer.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Organic acid anhydride</span> Any chemical compound having two acyl groups bonded to the same oxygen atom

An organic acid anhydride is an acid anhydride that is also an organic compound. An acid anhydride is a compound that has two acyl groups bonded to the same oxygen atom. A common type of organic acid anhydride is a carboxylic anhydride, where the parent acid is a carboxylic acid, the formula of the anhydride being (RC(O))2O. Symmetrical acid anhydrides of this type are named by replacing the word acid in the name of the parent carboxylic acid by the word anhydride. Thus, (CH3CO)2O is called acetic anhydride.Mixed (or unsymmetrical) acid anhydrides, such as acetic formic anhydride (see below), are known, whereby reaction occurs between two different carboxylic acids. Nomenclature of unsymmetrical acid anhydrides list the names of both of the reacted carboxylic acids before the word "anhydride" (for example, the dehydration reaction between benzoic acid and propanoic acid would yield "benzoic propanoic anhydride").

<span class="mw-page-title-main">Hippuric acid</span> Chemical compound

Hippuric acid is a carboxylic acid and organic compound. It is found in urine and is formed from the combination of benzoic acid and glycine. Levels of hippuric acid rise with the consumption of phenolic compounds. The phenols are first converted to benzoic acid, and then to hippuric acid and excreted in urine.

The Dakin–West reaction is a chemical reaction that transforms an amino-acid into a keto-amide using an acid anhydride and a base, typically pyridine. It is named for Henry Drysdale Dakin (1880–1952) and Randolph West (1890–1949). In 2016 Schreiner and coworkers reported the first asymmetric variant of this reaction employing short oligopeptides as catalysts.

In organic chemistry, the Arndt–Eistert reaction is the conversion of a carboxylic acid to its homologue. Named for the German chemists Fritz Arndt (1885–1969) and Bernd Eistert (1902–1978), the method entails treating an acid chlorides with diazomethane. It is a popular method of producing β-amino acids from α-amino acids.

<span class="mw-page-title-main">Trifluoroacetic acid</span> Chemical compound

Trifluoroacetic acid (TFA) is an organofluorine compound with the chemical formula CF3CO2H. It is a structural analogue of acetic acid with all three of the acetyl group's hydrogen atoms replaced by fluorine atoms and is a colorless liquid with a vinegar-like odor.

Di-<i>tert</i>-butyl dicarbonate Chemical compound

Di-tert-butyl dicarbonate is a reagent widely used in organic synthesis. Since this compound can be regarded formally as the acid anhydride derived from a tert-butoxycarbonyl (Boc) group, it is commonly referred to as Boc anhydride. This pyrocarbonate reacts with amines to give N-tert-butoxycarbonyl or so-called Boc derivatives. These carbamate derivatives do not behave as amines, which allows certain subsequent transformations to occur that would be incompatible with the amine functional group. The Boc group can later be removed from the amine using moderately strong acids. Thus, Boc serves as a protective group, for instance in solid phase peptide synthesis. Boc-protected amines are unreactive to most bases and nucleophiles, allowing for the use of the fluorenylmethyloxycarbonyl group (Fmoc) as an orthogonal protecting group.

<span class="mw-page-title-main">Anthranilic acid</span> Chemical compound

Anthranilic acid is an aromatic acid with the formula C6H4(NH2)(CO2H) and has a sweetish taste. The molecule consists of a benzene ring, ortho-substituted with a carboxylic acid and an amine. As a result of containing both acidic and basic functional groups, the compound is amphoteric. Anthranilic acid is a white solid when pure, although commercial samples may appear yellow. The anion [C6H4(NH2)(CO2)], obtained by the deprotonation of anthranilic acid, is called anthranilate. Anthranilic acid was once thought to be a vitamin and was referred to as vitamin L1 in that context, but it is now known to be non-essential in human nutrition.

<span class="mw-page-title-main">Erlenmeyer–Plöchl azlactone and amino-acid synthesis</span>

The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone.

<span class="mw-page-title-main">1-Fluoro-2,4-dinitrobenzene</span> Chemical compound

1-Fluoro-2,4-dinitrobenzene is a chemical that reacts with the N-terminal amino acid of polypeptides. This can be helpful for sequencing proteins.

Friedrich Hermann Leuchs was a German chemist.

Amino acid N-carboxyanhydrides, also called Leuchs' anhydrides, are a family of heterocyclic organic compounds derived from amino acids. They are white, moisture-reactive solids. They have been evaluated for applications the field of biomaterials.

<span class="mw-page-title-main">Bailey peptide synthesis</span>

The Bailey peptide synthesis is a name reaction in organic chemistry developed 1949 by J. L. Bailey. It is a method for the synthesis of a peptide from α-amino acid-N-carboxylic acid anhydrides (NCAs) and amino acids or peptide esters. The reaction is characterized by short reaction times and a high yield of the target peptide.

References

  1. Kanazawa, Hitoshi; Matsuura, Yoshiki; Tanaka, Nobuo; Kakudo, Masao; Komoto, Tadashi; Kawai, Tohru (1976). "The Crystal and Molecular Structure ofN-Carboxy Anhydride of Glycine". Bulletin of the Chemical Society of Japan. 49 (4): 954–956. doi:10.1246/bcsj.49.954.
  2. Wilder, Renee; Mobashery, Shahriar (1992). "The use of triphosgene in preparation of N-carboxy .alpha.-amino acid anhydrides". The Journal of Organic Chemistry. 57 (9): 2755–2756. doi:10.1021/jo00035a044.
  3. "Oxazolidine-2,5-dione". pubchem.ncbi.nlm.nih.gov. Retrieved 5 April 2022.
  4. Kricheldorf HR (September 2006). "Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides". Angewandte Chemie. 45 (35): 5752–84. doi:10.1002/anie.200600693. PMID   16948174.
  5. Tian ZY, Zhang Z, Wang S, Lu H (October 2021). "A Moisture-Tolerant Route to Unprotected α/β-Amino Acid N-carboxyanhydrides and Facile Synthesis of Hyperbranched Polypeptides". Nature Communications. 12 (1): 5810. Bibcode:2021NatCo..12.5810T. doi:10.1038/s41467-021-25689-y. PMC   8490447 . PMID   34608139.
  6. Sucu BO, Ocal N, Erden I (2015). "Direct synthesis of imidazolidin-4-ones via cycloadditions of imines with a Leuchs' anyhdride". Tetrahedron Letters. 56 (20): 2590–2. doi:10.1016/j.tetlet.2015.04.002.