Glycine methyl ester hydrochloride

Last updated
Glycine methyl ester hydrochloride
GlyOMeHCl.svg
Identifiers
3D model (JSmol)
EC Number
  • 227-139-1
PubChem CID
  • InChI=1S/C3H7NO2.ClH/c1-6-3(5)2-4;/h2,4H2,1H3;1H
    Key: COQRGFWWJBEXRC-UHFFFAOYSA-N
  • COC(=O)CN.Cl
Properties
C3H8ClNO2
Molar mass 125.55 g·mol−1
Appearancewhite solid
Melting point 175–176 °C (347–349 °F; 448–449 K)
Hazards
GHS labelling: [1]
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Glycine methyl ester hydrochloride is the organic compound with the formula [CH3O2CCH2NH3]Cl. A white, water-soluble solid, it is the hydrochloride of the methyl ester of the amino acid glycine.

Synthesis and reactions

Glycine methyl ester hydrochloride can be prepared by treatment of glycine with 2 equivalents of trimethylsilyl chloride, followed by the addition of methanol. [2] [3]

Upon treatment with base, the salt converts to glycine methyl ester. [4]

Glycine methyl ester (and other esters of glycine) are not shelf-stable, tending to polymerize when stored at room temperature [4] or convert to diketopiperazine. The hydrochloride is shelf-stable.

Related Research Articles

<span class="mw-page-title-main">Glycine</span> Amino acid

Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid (carbamic acid is unstable), with the chemical formula NH2CH2‐COOH. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG (GGU, GGC, GGA, GGG). Glycine is integral to the formation of alpha-helices in secondary protein structure due to its compact form. For the same reason, it is the most abundant amino acid in collagen triple-helices. Glycine is also an inhibitory neurotransmitter – interference with its release within the spinal cord (such as during a Clostridium tetani infection) can cause spastic paralysis due to uninhibited muscle contraction.

<span class="mw-page-title-main">Alanine</span> Α-amino acid that is used in the biosynthesis of proteins

Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side chain. Consequently, its IUPAC systematic name is 2-aminopropanoic acid, and it is classified as a nonpolar, aliphatic α-amino acid. Under biological conditions, it exists in its zwitterionic form with its amine group protonated (as −NH3+) and its carboxyl group deprotonated (as −CO2). It is non-essential to humans as it can be synthesised metabolically and does not need to be present in the diet. It is encoded by all codons starting with GC (GCU, GCC, GCA, and GCG).

In organic chemistry, transesterification is the process of exchanging the organic group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. The reaction can also be accomplished with the help of other enzymes, particularly lipases.

<span class="mw-page-title-main">Dipeptide</span>

A dipeptide is an organic compound derived from two amino acids. The constituent amino acids can be the same or different. When different, two isomers of the dipeptide are possible, depending on the sequence. Several dipeptides are physiologically important, and some are both physiologically and commercially significant. A well known dipeptide is aspartame, an artificial sweetener.

In chemistry, a hydrochloride is an acid salt resulting, or regarded as resulting, from the reaction of hydrochloric acid with an organic base. An alternative name is chlorhydrate, which comes from French. An archaic alternative name is muriate, derived from hydrochloric acid's ancient name: muriatic acid.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

In organic chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.

<span class="mw-page-title-main">Triphosgene</span> Chemical compound

Triphosgene (bis(trichloromethyl) carbonate (BTC) is a chemical compound with the formula OC(OCCl3)2. It is used as a solid substitute for phosgene, which is a gas. Triphosgene is thermodynamically stable up to 200 °C. Triphosgene is used in a variety of halogenation reactions.

<span class="mw-page-title-main">Acetic anhydride</span> Chemical compound

Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH3CO)2O. Commonly abbreviated Ac2O, it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, which is formed by its reaction with moisture in the air.

The Hofmann rearrangement is the organic reaction of a primary amide to a primary amine with one fewer carbon atom. The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate. The reaction can form a wide range of products, including alkyl and aryl amines.

The Bouveault–Blanc reduction is a chemical reaction in which an ester is reduced to primary alcohols using absolute ethanol and sodium metal. It was first reported by Louis Bouveault and Gustave Louis Blanc in 1903. Bouveault and Blanc demonstrated the reduction of ethyl oleate and n-butyl oleate to oleyl alcohol. modified versions of which were subsequently refined and published in Organic Syntheses.

<span class="mw-page-title-main">Knorr pyrrole synthesis</span>

The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group α to a carbonyl group (2).

<span class="mw-page-title-main">Cyanamide</span> Chemical compound featuring a nitrile group attached to an amino group

Cyanamide is an organic compound with the formula CN2H2. This white solid is widely used in agriculture and the production of pharmaceuticals and other organic compounds. It is also used as an alcohol-deterrent drug. The molecule features a nitrile group attached to an amino group. Derivatives of this compound are also referred to as cyanamides, the most common being calcium cyanamide (CaCN2).

<i>tert</i>-Butyllithium Chemical compound

tert-Butyllithium is a chemical compound with the formula (CH3)3CLi. As an organolithium compound, it has applications in organic synthesis since it is a strong base, capable of deprotonating many carbon molecules, including benzene. tert-Butyllithium is available commercially as hydrocarbon solutions; it is not usually prepared in the laboratory.

<span class="mw-page-title-main">Anthranilic acid</span> Chemical compound

Anthranilic acid is an aromatic acid with the formula C6H4(NH2)(CO2H) and has a sweetish taste. The molecule consists of a benzene ring, ortho-substituted with a carboxylic acid and an amine. As a result of containing both acidic and basic functional groups, the compound is amphoteric. Anthranilic acid is a white solid when pure, although commercial samples may appear yellow. The anion [C6H4(NH2)(CO2)], obtained by the deprotonation of anthranilic acid, is called anthranilate. Anthranilic acid was once thought to be a vitamin and was referred to as vitamin L1 in that context, but it is now known to be non-essential in human nutrition.

<span class="mw-page-title-main">Erlenmeyer–Plöchl azlactone and amino-acid synthesis</span>

The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone.

The Schotten–Baumann reaction is a method to synthesize amides from amines and acid chlorides:

Amino acid N-carboxyanhydrides, also called Leuchs' anhydrides, are a family of heterocyclic organic compounds derived from amino acids. They are white, moisture-reactive solids. They have been evaluated for applications the field of biomaterials.

<span class="mw-page-title-main">Phenylglycine</span> Chemical compound

Phenylglycine is the organic compound with the formula C6H5CH(NH2)CO2H. It is a non-proteinogenic alpha amino acid related to alanine, but with a phenyl group in place of the methyl group. It is a white solid. The compound exhibits some biological activity.

<span class="mw-page-title-main">Chloroalanine</span> Chemical compound

Chloroalanine (3-chloroalanine) is an unnatural amino acid with the formula ClCH2CH(NH2)CO2H. It is a white, water-soluble solid. The compound is usually derived from chlorination of serine. The compound is used in the synthesis of other amino acids by replacement of the chloride. Protected forms of the related iodoalanine are also known.

References

  1. "Glycine methyl ester hydrochloride". pubchem.ncbi.nlm.nih.gov. Retrieved 24 January 2022.
  2. Li, Jiabo; Sha, Yaowu (2008). "A Convenient Synthesis of Amino Acid Methyl Esters". Molecules. 13 (5): 1111–1119. doi: 10.3390/molecules13051111 . PMC   6245331 . PMID   18560331.
  3. White, James D.; Kranemann, Christian L.; Kuntiyong, Punlop (2002). "4-Methoxycarbonyl-2-methyl-1,3-oxazole". Org. Synth. 79: 244. doi:10.15227/orgsyn.079.0244.
  4. 1 2 Myers, Andrew G.; Gleason, James L. (1999). "Asymmetric Synthesis of α-Amino Acids by the Alkylation of Pseudoephedrine Glycinamide: L-Allylglycine and N-BOC-l-Allylglycine". Organic Syntheses. 76: 57. doi:10.15227/orgsyn.076.0057.