Grain damage

Last updated

Grain damage is any degradation in the quality of grain. In the current grain trade, this damage can affect price, feed quality, food product quality, and susceptibility to pest contamination.

Contents

Between the field and the end use, grain may go through any number of handling operations which can each contribute to grain damage. For example, grain might encounter free fall, conveyors, spouts, grain throwers, elevators, hoppers, dryers, and many more. Overall, these handling methods can be evaluated as to what effect they have on the grain. Damaged grain can often be characterized by the extent to which it reduces storage time. For example, cracked or broken kernels are more susceptible to insect or bacteria as well as chemical degradation. The damage to the actual grain is only one example of losses incurred after harvest. In order to quantify grain damage, one must also understand grain quality. Grain quality is a very broad term and can relate to many topics such as foreign material, chemical compositions, mechanical damage, insect infestations, and many more. These references to quality are highly dependent on the end use of the grain. Certain types of damage may be acceptable to specific industries, whereas others cannot use grain with these issues.

Definition

Grain damage is such a broad term that it can be difficult to pinpoint all factors that can be considered damage. In addition, these factors are not easily measured. Many common methods for determining grain damage levels include some type of visible inspection, which can carry with it a large amount of error.

The United States Department of Agriculture(USDA) has for many years listed standards for many types of grains. In those standards, they have identified a normalized grading scale based on factors such as test weight and limits of damaged kernels and foreign material. Throughout these standards, the definitions listed for damage can be open to interpretation by the person evaluating the grain. For example, "damaged kernels" for maize (corn) refers to kernels that are "badly ground-damaged, badly weather-damaged, diseased, frost-damaged, germ-damaged, heat-damaged, insect-bored, mold-damaged, sprout-damaged, or otherwise materially damaged." These characteristics are largely subjective and not easily measured. [1]

In the USDA's scale, as the grade number decreases, the quality of grain increases. A summary of these standards for maize, soybeans, and wheat are listed in the tables below (as effective September 1996). The USDA also lists these standards for many less popular grains such as barley, canola, flaxseed, oat, rye, sorghum, and sunflower seed.

U.S. Standards for Grain
GradeU.S. Grades for (corn) maize [1] U.S. Grades for soybeans [2] U.S. Grades for wheat [3]
Maximum Heat Damaged Kernels (%)Maximum Broken Corn & Foreign Material (%)Maximum Total Damaged Kernels (%)Maximum Heat Damaged Kernels (%)Maximum Splits (%)Maximum Total Damaged Kernels (%)Maximum Heat Damaged Kernels (%)Maximum Shrunken/Broken Kernels (%Maximum Total Damaged Kernels (%)
U.S. No. 10.12.03.00.210.02.00.23.02.0
U.S. No. 20.23.05.00.520.03.00.25.04.0
U.S. No. 30.54.07.01.030.05.00.58.07.0
U.S. No. 41.05.010.03.040.08.01.012.010.0
U.S. No. 53.07.015.0---------3.020.015.0

Types

Broken/Cracked Kernels

Maize kernels arranged by number of stress cracks, from zero (left) to multiple (right). Stress Cracks-Corn.jpg
Maize kernels arranged by number of stress cracks, from zero (left) to multiple (right).

One of the most common form of grain damage is broken or cracked kernels. This is likely to happen during handling processes and transportation.

The USDA lists the cutoffs for broken maize as anything that falls through a 12/64 round-hole sieve, [1] and broken soybeans as anything that falls through an 8/64 round-hole sieve. [2] These standards to do not directly account for any cracks that are present in the seed coat. These cracks in kernels are known to cause deterioration of the grain more quickly through accelerated insect and fungal infestation and a quicker susceptibility to breaking during further handling. [4] The allowable storage time for maize was found to decrease with an increase in mechanical damage (broken/cracked kernels). The storage time was found to decrease as mechanical damage increased from zero to forty percent. [5] With this research, it is necessary to attempt to minimize the amount of mechanical damage in grains. In addition to exterior cracks, stress cracks can form inside of the kernel. These stress cracks usually come from the combination of thermal and mechanical handling processes, such as drying. Kernels with internal stress cracks are found to have a higher breakage susceptibility and can break more quickly during further handling. [6]

Measuring Broken/Cracked Kernels

There are many methods available for determining mechanical grain damage. The simplest method involves visible inspection of the grain. The USDA lists the threshold for broken grain to be anything that will fit through a 12/64 and 8/64  inch round-hole sieve for maize and soybeans respectively as listed above. This does not account for any cracks or defects in the leftover grain itself.

In 1976, Chowdhury and Buchele developed a Numerical Damage Index for maize. [7] They proposed a system that characterized the damage to each kernel on a scale from D1 (no defects) to D5 (very severely damaged). The procedure then takes a weighted average of the number of kernels assigned to each level to obtain a standardized measure of mechanical damage. This approach is based on visual observations, which carry with them a large amount of variability due to the individual conducting the test.

Other researchers have attempted to measure mechanical damage in more concrete ways. One method is to use a dye that will adhere only to the broken areas of the kernel. From there, the dye is washed off with some type of solvent and measured using a colorimetric technique. [8] A more recently developed technique uses the dielectric properties of the grain to measure the damage level; this method proved to very accurately measure the number of damaged kernels. [9]

Fungal and insect infestation

Fungal and insect infestations can cause dry matter losses which in turn make the grain less valuable. [10] Insect infestation and growth of fungi (including mold) go hand in hand, as many insects actually feed on the storage molds created through the deterioration of grain. [10] Insect infestations can result in not only grain damage as understood by shorter storage times, but can also affect the actual weight of the grain, leading to lower prices at market. In addition, these problems can reduce the nutritional or chemical value of the grain, which can be very important based on the end use. [11] Mold growth can be triggered by moisture, mechanical damage, storage temperature, and other factors. [12] Mycotoxins refers to the toxic fungal chemicals that grow on crops. Of these, the most researched of these is aflatoxin, which have the potential to be carcinogenic (cancer-causing). [13]

Identifying fungal and insect infestation

The appearance of mycotoxins in grain may have different affects. Some noticeable effects include color changes or mold spots as shown in the images, or even an odor coming from the grain. However, more underlying effects of fungal infection may be subtle and hard to notice without testing. As with broken and cracked kernels, mold damage is usually graded on a visual inspection basis, which can be subjective and have a large variation. Ng et al. used a machine vision method of evaluating mold damage by calculating the number of pixels in an image of grain that included mold, and representing that as a fraction of the total surface area. [14] Infestation by insects such as the maize weevil can sometimes be easier to identify visually, but difficult to quantify on a large scale.

Damage caused by pests

Moths are common pests of grain storage facilities, and are most often found when the grain is stored improperly. Species such as Pyralis farinalis live in grain silos where moisture has been able to infiltrate the grain supply. These moths will lay their eggs in the grain and all parts of the grain will be eaten by the caterpillars after they hatch. [15]

Rats and mice may also damage stored grain.

Heat damage

Heat damaged maize kernels may have a discolored, wrinkled, and blistered, be puffed and/or swollen, or their seed coats may begin peeling off. Drier Damage-Corn.jpg
Heat damaged maize kernels may have a discolored, wrinkled, and blistered, be puffed and/or swollen, or their seed coats may begin peeling off.

Heat damage most likely comes from drying of grain. It is a subset of damage including broken or cracked kernels but is identified as its own type of damage by the USDA. The elevated temperatures used during the drying process to eliminate moisture can have adverse effects on the kernels themselves. The most common signs of heat damage include breakage/cracks, discoloration, and shrinkage. When grain goes through the drying process, temperature and moisture gradients in the grain which can cause stress cracks both on the interior and exterior of the kernels. [16] These cracks can pose problems for grain quality as listed in the two previous types of grain damage.

Brown et al. showed that as moisture content increases, the percentage of stress-cracked kernels also increases for multiple types of drying. [17] Some research has also been done on the effect of different types of convective dryers. Jayas and Ghosh found that the percentage of stress cracked kernels was largest with cross-flow driers and smallest with concurrent-flow dryers. [16]

Measuring heat damage

Heat damage can be measured in a number of ways. First of all is always visual inspection. A noticeable change in color is a distinct effect of heat damage. Some researchers have developed their own methods for identifying color differences through the use of what they call a color difference meter. [18] This meter measures color by three parameters based on lightness and darkness of the sample. A more recent method of assessing heat damage has been created for wheat by Wang, Dowell, and Chung using near-infrared spectroscopy. Their process for using the near-infrared spectroscopy process could classify heat damaged kernels at a rate of approximately 96 percent accuracy. [19]

Causes

Damage during harvest

This article focuses on the damage incurred to grain between the field and its end use. Therefore, the first cause of grain damage is harvesting itself. A large cause of grain damage is mechanical damage incurred during the threshing process in a combine. This process of stripping the grain from the plant can often cause cracks and other damage. Many researches have attempted to find methods to minimize grain damage without inhibiting harvest productivity. Many harvest factors can effect the amount of damage that grain will incur during harvest. Some of these are uncontrollable by the operator such as moisture content. However, many of the parameters of the combine can be varied in an attempt to reduce grain damage and obtain better yields. Some of these parameters include rotor speed, ground speed, concave settings, sieve settings, and fan speeds. Research indicates that the rotor speed has the largest effect on grain damage, with damage increasing exponentially with rotor speed. [20] In addition, grain damage can actually increase as the forward speed, or ground speed, of the machine is decreased. [20] Similar ground speed trends were found in wheat. [21] The settings of the concave can also increase grain damage if the gap of the concave is too narrow or as the length of the concave increases. [22]

Damage during handling

Filling

Free fall and spouting
Combine using auger to unload into grain cart. John Deere 9660STS combine and J&M auger wagon.jpg
Combine using auger to unload into grain cart.

Grain undergoes free fall during many handling processes. For example, the grain is conveyed out of the combine and dropped into some other storage device, usually a grain cart or semi. It also undergoes free fall when unloaded into bins or silos. Grain can be damaged from free fall anytime it is dropped into a new storage device. This damage is dependent on many factors such as type of grain, the height of travel, contact surfaces, discharge size, and impact angle. As grain drop height increases, so does the amount of mechanical damage incurred due to the impact. For the same distance dropped, the highest percent of breakage will be in maize, followed by soybeans and then wheat. [23] Grain throwers may be used spread grain in an attempt to reach the full load capacity of a storage space, and can increase damage due to the grain undergoing yet another handling process.

Conveyors

There are many options for moving grain from one location to another. Some of these options include conveyors such as belt conveyors, drag conveyors, screw conveyors, and pneumatic conveyors. Belt conveyors cause the least damage to grain due to the lack of contact forces, however, they cannot be used for steep inclines. [24] Another commonly used conveyor is screw conveyors. Screw conveyors, also known as augers, are conveyors made from a helical blade with rotational motion to move grain. They are on many types of farm equipment, including combines and grain carts for example. Augers generally have a high power requirements, but are portable and low cost. In addition, augers tend to cause high levels of mechanical damage to the grain. Much research has been completed to quantify the amount of grain damage caused by various screw conveyors. The percentage of grain damage is decreased when the auger is operated at capacity because the grain cannot bounce around and strike surfaces as easily. [25] In addition, grain damage increases with increased rotational speed. For this research with screw conveyors, the angle of the incline was found to have no significant effect on the grain damage. [25]

Grain elevator in Edon, Ohio Elevators, Edon, Ohio.jpg
Grain elevator in Edon, Ohio

Pneumatic conveyors use a moving air-stream to propel grain, and are used in situations when the path of the grain is complex. Grain damage can occur especially at any changes in the tube path, but can be minimized when air speeds are kept below 25 meters per second. [24] It is shown that grain damage increases exponentially above air velocities of 20 meters per second. [26] In research by Baker et al. breakage levels of maize in pneumatic conveyors were found to be similar to those of bucket or drag conveyors. [27]

Elevators

The grain elevator may contain several types of these conveyors, such as belt or drag conveyors. In addition, they utilize bucket elevators to lift the grain from the drop off point to the storage bins. Bucket elevators can be used in many places of final storage or use, after grain is dropped off by whatever form of transportation was used to get it there. Bucket conveyors often impart little mechanical damage because the grains are not continually moving with respect to each other. Grain damage is only imparted when the kernels are loaded into the buckets at the bottom of the elevator and when they are discharged at the top. [25]

Related Research Articles

<span class="mw-page-title-main">Food storage</span> Type of storage that allows food to be eaten after time

Food storage is a way of decreasing the variability of the food supply in the face of natural, inevitable variability. It allows food to be eaten for some time after harvest rather than solely immediately. It is both a traditional domestic skill and, in the form of food logistics, an important industrial and commercial activity. Food preservation, storage, and transport, including timely delivery to consumers, are important to food security, especially for the majority of people throughout the world who rely on others to produce their food.

<i>Helicoverpa zea</i> Species of moth

Helicoverpa zea, commonly known as the corn earworm, is a species in the family Noctuidae. The larva of the moth Helicoverpa zea is a major agricultural pest. Since it is polyphagous during the larval stage, the species has been given many different common names, including the cotton bollworm and the tomato fruitworm. It also consumes a wide variety of other crops.

<span class="mw-page-title-main">Postharvest</span> Stage of crop production immediately after harvest

In agriculture, postharvest handling is the stage of crop production immediately following harvest, including cooling, cleaning, sorting and packing. The instant a crop is removed from the ground, or separated from its parent plant, it begins to deteriorate. Postharvest treatment largely determines final quality, whether a crop is sold for fresh consumption, or used as an ingredient in a processed food product.

<span class="mw-page-title-main">Wheat weevil</span> Species of beetle

The wheat weevil, also known as the grain weevil or granary weevil, is an insect that feeds on cereal grains, and is a common pest in many places. It can cause significant damage to harvested stored grains and may drastically decrease crop yields. The females lay many eggs and the larvae eat the inside of the grain kernels.

<i>Oryzaephilus surinamensis</i> Species of beetle

Oryzaephilus surinamensis, the sawtoothed grain beetle, is a beetle in the superfamily Cucujoidea. It is a common, worldwide pest of grain and grain products as well as chocolate, drugs, and tobacco. The species' binomial name, meaning "rice-lover from Suriname," was coined by Carl Linnaeus, who received specimens of the beetle from Surinam. It is also known as the malt beetle and may be referenced in the poem This Is The House That Jack Built in the line "....the rat that ate the malt that lay in the house that Jack built" the malt referenced may not be actual malted grain but a sawtoothed grain beetle.

<i>Gibberella zeae</i> Species of fungus

Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight (FHB), a devastating disease on wheat and barley. The pathogen is responsible for billions of dollars in economic losses worldwide each year. Infection causes shifts in the amino acid composition of wheat, resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol (DON), which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.

Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.

Home-stored product entomology is the study of insects that infest foodstuffs stored in the home. It deals with the prevention, detection and eradication of pests.

<span class="mw-page-title-main">Maize</span> Species of grass cultivated as a food crop

Maize, also known as corn in North American English, is a tall stout grass that produces cereal grain. It was domesticated by indigenous peoples in southern Mexico about 9,000 years ago from wild teosinte. Native Americans planted it alongside beans and squashes in the Three Sisters polyculture. The leafy stalk of the plant gives rise to male inflorescences or tassels which produce pollen, and female inflorescences called ears. The ears yield grain, known as kernels or seeds. In modern commercial varieties, these are usually yellow or white; other varieties can be of many colors.

<span class="mw-page-title-main">Angoumois grain moth</span> Species of moth

The Angoumois grain moth is a species of the Gelechiidae moth family, commonly referred to as the "rice grain moth". It is most abundant in the temperate or tropical climates of India, China, South Africa, Indonesia, Malaysia, Japan, Egypt and Nigeria, with its location of origin being currently unknown. It is most commonly associated as a pest of field and stored cereal grains as they burrow within the kernel grains of crop plants, rendering them unusable for human consumption. By laying eggs between the grains themselves and hatching at a later time, often during the processing, transportation or storage stages, the moth can be transported to households or countries presently free of Angoumois grain moth infestations. Thus, constant protection against the Angoumois grain moth is required for grain up till the time of consumption.

<span class="mw-page-title-main">Post-harvest losses (grains)</span> Ways in which grain losses can occur and ways of addressing problems

Grains may be lost in the pre-harvest, harvest, and post-harvest stages. Pre-harvest losses occur before the process of harvesting begins, and may be due to insects, weeds, and rusts. Harvest losses occur between the beginning and completion of harvesting, and are primarily caused by losses due to shattering. Post-harvest losses occur between harvest and the moment of human consumption. They include on-farm losses, such as when grain is threshed, winnowed, and dried. Other on-farm losses include inadequate harvesting time, climatic conditions, practices applied at harvest and handling, and challenges in marketing produce. Significant losses are caused by inadequate storage conditions as well as decisions made at earlier stages of the supply chain, including transportation, storage, and processing, which predispose products to a shorter shelf life.

<span class="mw-page-title-main">Maize weevil</span> Species of beetle

The maize weevil, known in the United States as the greater rice weevil, is a species of beetle in the family Curculionidae. It can be found in numerous tropical areas around the world, and in the United States, and is a major pest of maize. This species attacks both standing crops and stored cereal products, including wheat, rice, sorghum, oats, barley, rye, buckwheat, peas, and cottonseed. The maize weevil also infests other types of stored, processed cereal products such as pasta, cassava, and various coarse, milled grains. It has even been known to attack fruit while in storage, such as apples.

In agriculture, grain quality depends on the use of the grain. In ethanol production, the chemical composition of grain such as starch content is important, in food and feed manufacturing, properties such as protein, oil and sugar are significant, in the milling industry, soundness is the most important factor to consider when it comes to the quality of grain. For grain farmers, high germination percentage and seed dormancy are the main features to consider. For consumers, properties such as color and flavor are most important.

Purdue Improved Crop Storage (PICS) bags are bags developed by scientists at Purdue University to store grain and seeds. They use hermetic storage technology to reduce loss of post-harvest cowpea due to orchid infestations in West and Central Africa.

Grain drying is the process of drying grain to prevent spoilage during storage. Artificial grain drying uses fuel or electricity powered processes supplementary to natural ones, including swathing/windrowing for air and sun drying, or stooking before threshing.

<span class="mw-page-title-main">Husk</span> Outer shell or coating of a seed

Husk in botany is the outer shell or coating of a seed. In the United States, the term husk often refers to the leafy outer covering of an ear of maize (corn) as it grows on the plant. Literally, a husk or hull includes the protective outer covering of a seed, fruit, or vegetable.

<i>Liposcelis</i> Genus of booklice

Liposcelis is a genus of insects in the order Psocoptera, the booklice and barklice. There are about 126 species. Many species are associated with human habitation and several are well known as pests of stored products. The genus is distributed nearly worldwide.

Grain storage on a subsistence farm is primarily based on minimizing grain loss. In modern agricultural practices there are methods of managing under 1% grain loss, but small subsistence farms can see 20% - 100% of grain loss. This causes starvation and an unstable food supply. Grain loss can be caused by mold growth, bugs, birds, or any other contamination.

Cladosporium ear rot is a disease that affects maize. The disease is caused by the saprophytic fungus Cladosporium herbarum and is characterized by black or dark green fungal growths that cause black streaks on kernels.

<i>Stenocarpella maydis</i> Species of fungus

Stenocarpella maydis (Berk.) Sutton is a plant pathogenic fungus and causal organism of diplodia ear and stalk rot. Corn and canes are the only known hosts to date. No teleomorph of the fungus is known.

References

  1. 1 2 3 USDA. Federal Grain Inspection Service. "Official U.S. Standards for Grain: Corn" (PDF). Archived from the original (PDF) on February 17, 2013. Retrieved April 1, 2013.
  2. 1 2 USDA. Federal Grain Inspection Service. "Official U.S. Standards for Grain:Soybeans" (PDF). Archived from the original (PDF) on February 17, 2013. Retrieved April 1, 2013.
  3. USDA. Federal Grain Inspection Service. "Official U.S. Standards for Grain: Wheat" (PDF). Archived from the original (PDF) on July 19, 2021. Retrieved April 1, 2013.
  4. Paulsen, M.R.; Nave, W.R.; Gray, L.E. (1981). "Soybean seed quality as affected by impact damage". Transactions of the ASAE. 24 (6): 1577–1582. doi:10.13031/2013.34493.
  5. Ng, H.F.; W.F. Wilcke; R.V. Morey; R.A. Meronuck; J.P. Lang (1998). "Mechanical damage and corn storability". Transactions of the ASAE. 41 (4): 1095–1100. doi:10.13031/2013.17239.
  6. Gunasekaran, S.; T.M. Cooper; A.G. Berlage; P. Krishnan (1987). "Image processing for stress cracks in corn kernels". Transactions of the ASAE. 30 (1): 0266–0273. doi:10.13031/2013.30438.
  7. Chowdhury, Mofazzal; Wesley Buchele (1976). "Development of a numerical damage index for critical evaluation of mechanical damage of corn". Transactions of the ASAE. 19 (3): 0428–0432. doi:10.13031/2013.36043.
  8. Chowdhury, Mofazzal; Wesley Buchele (1976). "Colorimetric determination of grain damage". Transactions of the ASAE. 19 (5): 0807–0808. doi:10.13031/2013.36122. S2CID   26787971 . Retrieved April 1, 2013.
  9. Al-Mahasneh, Majdi Ali; Stuart J. Birrell; Carl J. Bern; Kamal Adam (2001). "Measurement of corn mechanical damage using dielectric properties". ASAE Annual Meeting. Paper number 011073. Retrieved April 1, 2013.
  10. 1 2 Harein, Phillip; Richard Meronuck (1995). "Stored Losses Due to Insects and Molds and the Importance of Proper Grain Management" (PDF). Stored Product Management: 29–31. Retrieved April 1, 2013.
  11. Reed, C.; S. Doyungan; B. Ioerger; A. Gretchell (2007). "Response of storage molds to different initial moisture contents of maize(corn) stored at 25 C, and effect on respiration rate and nutrient composition". Journal of Stored Products Research. 43 (4): 443–458. doi:10.1016/j.jspr.2006.12.006.
  12. Bern, C.J.; J.L. Steele; R.V. Morey (2002). "Shelled Corn CO2 Evolution and Storage Time for 0.5% Dry Matter Loss". Applied Engineering in Agriculture. 18 (6): 703–706. doi:10.13031/2013.11325.
  13. Tumbleson, M.E.; Vijay Singh; Kent D. Rausch; David B. Johnston; David F. Kendra; Gavin L. Meerdink (2006). "Mycotoxin control during grain processing". ASAE Annual Meeting. Paper number 066040. Retrieved April 1, 2013.
  14. Ng, H.F.; W.F. Wilke; R.V. Morey; J.P. Lang (1998). "Machine vision evaluation of corn kernel mechanical and mold damage". Transactions of the ASAE. 41 (2): 415–420. doi:10.13031/2013.17166.
  15. Howard, Leland Ossian; Marlatt, C. L. (1896). The Principal Household Insects of the United States. U.S. Government Printing Office.
  16. 1 2 Jayas, D.S.; P.K. Ghosh (2006). "Preserving quality during grain drying and techniques for measuring grain quality" (PDF). Proceedings of the 9th International Working Conference on Stored Product Protection. Brazilian Post-harvest Association (Campinas). Retrieved April 1, 2013.
  17. Brown, R.B.; et al. (1979). "Effect of drying method on grain corn quality" (PDF). Cereal Chem. 56 (6): 529–532. Retrieved April 1, 2013.
  18. Ross, I.J.; G.M. White (1972). "Discoloration and stress cracking of white corn as affected by overdrying". Transactions of the ASAE. 15 (2): 0327–0329. doi:10.13031/2013.37898.
  19. Wang, D.; F.E. Dowell; D.S. Chung (2001). "Assessment of heat-damaged wheat kernels using near-infrared spectroscopy". ASAE Annual Meeting. Paper number 016006. Retrieved April 1, 2013.
  20. 1 2 Quick, Graeme R.; P. Leader (2003). "Combine "Sweet Spot": Integrating Harvest Yield, Grain Damage and Losses" (PDF). Electronic Proceedings of the International Conference on Crop Harvesting and Processing: 9–11. Archived from the original (PDF) on February 23, 2014. Retrieved April 1, 2013.
  21. Wrubleski, P.D.; L.G. Smith (1980). "Separation characteristics of conventional and non-conventional grain combines". Transactions of the ASAE. 23 (3): 0530–0534. doi:10.13031/2013.34617.
  22. Srivastava, A.K.; C.E. Goering; R.P. Rohrbach; D.R. Buckmaster (2006). "Grain Harvesting" (PDF). Chapter 12 in Engineering Principles of Agricultural Machines. 2nd Ed. (St. Joseph, MI): 403–436. doi:10.13031/2013.41474. Archived from the original (PDF) on February 23, 2014. Retrieved April 1, 2013.
  23. Fiscus, Douglas E.; George H. Foster; Henry H. Kaufmami (1971). "Physical damage of grain caused by various handling techniques". Transactions of the ASAE. 14 (3): 0480–0485. doi:10.13031/2013.38319.
  24. 1 2 Labiak, J.S.; R.E. Hines (1999). "CIGR Handbook of Agricultural Engineering". Chapter 1 Grains and Grain Quality. IV Agro-Processing Engineering (Part 1.2 Grain Handling). Retrieved April 1, 2013.
  25. 1 2 3 Hall, Glenn E. (1974). "Damage during handling of shelled corn and soybeans". Transactions of the ASAE. 17 (2): 0335–0338. doi:10.13031/2013.36854.
  26. Baker, Kevin D.; Richard L. Stroshine; George H. Foster; Kevin J. Magee (1985). "Performance of a pressure pneumatic grain conveying system". Applied Engineering in Agriculture. 1 (2): 72–79. doi:10.13031/2013.26768.
  27. Baker, Kevin D.; Richard L. Stroshine; Kevin J. Magee; George H. Foster; Robert B. Jacko (1986). "Grain damage and dust generation in a pressure pneumatic conveying system". Transactions of the ASAE. 29 (3): 0840–0847. doi:10.13031/2013.30238.