A group-contribution method in chemistry is a technique to estimate and predict thermodynamic and other properties from molecular structures.
In today's chemical processes hundreds of thousands of components are used. The Chemical Abstracts Service registry lists 56 million substances, [1] but many of these are only of scientific interest.
Process designers need to know some basic chemical properties of the components and their mixtures. Experimental measurement is often too expensive.
Predictive methods can replace measurements if they provide sufficiently good estimations. The estimated properties cannot be as precise as well-made measurements, but for many purposes the quality of estimated properties is sufficient. Predictive methods can also be used to check the results of experimental work.
A group-contribution method uses the principle that some simple aspects of the structures of chemical components are always the same in many different molecules. The smallest common constituents are the atoms and the bonds. The vast majority of organic components, for example, are built of carbon, hydrogen, oxygen, nitrogen, halogens (not including astatine), and maybe sulfur or phosphorus. Together with a single, a double, and a triple bond there are only ten atom types and three bond types to build thousands of components. The next slightly more complex building blocks of components are functional groups, which are themselves built from few atoms and bonds.
A group-contribution method is used to predict properties of pure components and mixtures by using group or atom properties. This reduces the number of needed data dramatically. Instead of needing to know the properties of thousands or millions of compounds, only data for a few dozens or hundreds of groups have to be known.
The simplest form of a group-contribution method is the determination of a component property by summing up the group contributions :
This simple form assumes that the property (normal boiling point in the example) is strictly linearly dependent on the number of groups, and additionally no interaction between groups and molecules are assumed. This simple approach is used, for example, in the Joback method for some properties, and it works well in a limited range of components and property ranges, but leads to quite large errors if used outside the applicable ranges.
This technique uses the purely additive group contributions to correlate the wanted property with an easy accessible property. This is often done for the critical temperature, where the Guldberg rule implies that Tc is 3/2 of the normal boiling point, and the group contributions are used to give a more precise value:
This approach often gives better results than pure additive equations because the relation with a known property introduces some knowledge about the molecule. Commonly used additional properties are the molecular weight, the number of atoms, chain length, and ring sizes and counts.
For the prediction of mixture properties it is in most cases not sufficient to use a purely additive method. Instead the property is determined from group-interaction parameters:
where P stands for property, and Gij for group-interaction value.
A typical group-contribution method using group-interaction values is the UNIFAC method, which estimates activity coefficients. A big disadvantage of the group-interaction model is the need for many more model parameters. Where a simple additive model only needs 10 parameters for 10 groups, a group-interaction model needs already 45 parameters. Therefore, a group-interaction model has normally not parameter for all possible combinations[ clarify ].
Some newer methods [2] introduce second-order groups. These can be super-groups containing several first-order (standard) groups. This allows the introduction of new parameters for the position of groups. Another possibility is to modify first-order group contributions if specific other groups are also present. [3]
If the majority of group-contribution methods give results in gas phase, recently, a new such method [4] was created for estimating the standard Gibbs free energy of formation (ΔfG′°) and reaction (ΔrG′°) in biochemical systems: aqueous solution, temperature of 25 °C and pH = 7 (biochemical conditions). This new aqueous-system method is based on the group-contribution method of Mavrovouniotis. [5] [6]
A free-access tool of this new method in aqueous condition is available on the web. [7]
Group contributions are obtained from known experimental data of well defined pure components and mixtures. Common sources are thermophysical data banks like the Dortmund Data Bank, Beilstein database, or the DIPPR data bank (from AIChE). The given pure component and mixture properties are then assigned to the groups by statistical correlations like e. g. (multi-)linear regression.
Important steps during the development of a new method are:
The reliability of a method mainly relies on a comprehensive data bank where sufficient source data have been available for all groups. A small data base may lead to a precise reproduction of the used data but will lead to significant errors when the model is used for the prediction of other systems.
The Joback method was published in 1984 by Kevin G. Joback. It can be used to estimate critical temperature, critical pressure, critical volume, standard ideal gas enthalpy of formation, standard ideal gas Gibbs energy of formation, ideal gas heat capacity, enthalpy of vaporization, enthalpy of fusion, normal boiling point, freezing point, and liquid viscosity. [8] The Joback method is a first-order method, and does not account for molecular interactions.
The Ambrose method was published by Douglas Ambrose in 1978 and 1979. It can be used to estimate critical temperature, critical pressure, and critical volume. In addition to the molecular structure, it requires normal boiling point for estimating critical temperature and molecular weight for estimating critical pressure. [9] [10]
The Nannoolal method was published by Yash Nannoolal et al in 2004. It can be used to estimate the normal boiling point. It includes first-order and second-order contributions. [11]
The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.
Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria.
In chemistry, a solution is a special type of homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent. If the attractive forces between the solvent and solute particles are greater than the attractive forces holding the solute particles together, the solvent particles pull the solute particles apart and surround them. These surrounded solute particles then move away from the solid solute and out into the solution. The mixing process of a solution happens at a scale where the effects of chemical polarity are involved, resulting in interactions that are specific to solvation. The solution usually has the state of the solvent when the solvent is the larger fraction of the mixture, as is commonly the case. One important parameter of a solution is the concentration, which is a measure of the amount of solute in a given amount of solution or solvent. The term "aqueous solution" is used when one of the solvents is water.
In thermodynamics, the enthalpy of vaporization, also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. The enthalpy of vaporization is a function of the pressure and temperature at which the transformation takes place.
Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate. It relates to the balance of particles escaping from the liquid in equilibrium with those in a coexisting vapor phase. A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the attractive interactions between liquid molecules become less significant in comparison to the entropy of those molecules in the gas phase, increasing the vapor pressure. Thus, liquids with strong intermolecular interactions are likely to have smaller vapor pressures, with the reverse true for weaker interactions.
In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.
Freezing-point depression is a drop in the maximum temperature at which a substance freezes, caused when a smaller amount of another, non-volatile substance is added. Examples include adding salt into water, alcohol in water, ethylene or propylene glycol in water, adding copper to molten silver, or the mixing of two solids such as impurities into a finely powdered drug.
Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa, or 100 kPa. Both of these definitions for the standard condition for pressure are in use.
The Dortmund Data Bank is a factual data bank for thermodynamic and thermophysical data. Its main usage is the data supply for process simulation where experimental data are the basis for the design, analysis, synthesis, and optimization of chemical processes. The DDB is used for fitting parameters for thermodynamic models like NRTL or UNIQUAC and for many different equations describing pure component properties, e.g., the Antoine equation for vapor pressures. The DDB is also used for the development and revision of predictive methods like UNIFAC and PSRK.
The calculation of glass properties is used to predict glass properties of interest or glass behavior under certain conditions without experimental investigation, based on past data and experience, with the intention to save time, material, financial, and environmental resources, or to gain scientific insight. It was first practised at the end of the 19th century by A. Winkelmann and O. Schott. The combination of several glass models together with other relevant functions can be used for optimization and six sigma procedures. In the form of statistical analysis glass modeling can aid with accreditation of new data, experimental procedures, and measurement institutions.
This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.
In thermodynamics, the enthalpy of mixing is the enthalpy liberated or absorbed from a substance upon mixing. When a substance or compound is combined with any other substance or compound, the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. This enthalpy, if released exothermically, can in an extreme case cause an explosion.
The Joback method predicts eleven important and commonly used pure component thermodynamic properties from molecular structure only.
In statistical thermodynamics, UNIQUAC is an activity coefficient model used in description of phase equilibria. The model is a so-called lattice model and has been derived from a first order approximation of interacting molecule surfaces. The model is, however, not fully thermodynamically consistent due to its two-liquid mixture approach. In this approach the local concentration around one central molecule is assumed to be independent from the local composition around another type of molecule.
In thermodynamic theory, the Klincewicz method is a predictive method based both on group contributions and on a correlation with some basic molecular properties. The method estimates the critical temperature, the critical pressure, and the critical volume of pure components.
Benson group-increment theory (BGIT), group-increment theory, or Benson group additivity uses the experimentally calculated heat of formation for individual groups of atoms to calculate the entire heat of formation for a molecule under investigation. This can be a quick and convenient way to determine theoretical heats of formation without conducting tedious experiments. The technique was developed by professor Sidney William Benson of the University of Southern California. It is further described in Heat of formation group additivity.
PSRK is an estimation method for the calculation of phase equilibria of mixtures of chemical components. The original goal for the development of this method was to enable the estimation of properties of mixtures containing supercritical components. This class of substances cannot be predicted with established models, for example UNIFAC.
The Lydersen method is a group contribution method for the estimation of critical properties temperature (Tc), pressure (Pc) and volume (Vc). The Lydersen method is the prototype for and ancestor of many new models like Joback, Klincewicz, Ambrose, Gani-Constantinou and others.
VTPR is an estimation method for the calculation of phase equilibria of mixtures of chemical components. The original goal for the development of this method was to enable the estimation of properties of mixtures which contain supercritical components. These class of substances couldn't be predicted with established models like UNIFAC.
Deresh RamjugernathFAAS is a South African professor of Engineering Technology & Applied Sciences. He was a Deputy Vice-Chancellor of Research at the University of KwaZulu-Natal (UKZN) and the current Deputy Vice-Chancellor of Learning and Teaching at Stellenbosch University (SU).