Heat dome

Last updated
A heat dome, over the United States Heat Wave.jpg
A heat dome, over the United States

A heat dome is a weather phenomenon consisting of extreme heat that is caused when the atmosphere traps hot air as if bounded by a lid or cap. Heat domes happen when strong high pressure atmospheric conditions remain stationary for an unusual amount of time, preventing convection and precipitation and keeping hot air "trapped" within a region. This can be caused by multiple factors, including sea surface temperature anomalies and the influence of a La Niña. [1] [2] The upper air weather patterns are slow to move, referred to by meteorologists as an Omega block. [3]

Contents

The term is often extrapolated in media terminology for any heat wave situation, though heat waves differ as they are periods of excessively hot weather not necessarily caused by such stationary high-pressure systems. [4] The term heat dome is also used in the context of urban heat islands. [5]

Characteristics

Heat domes are typically associated with minimal cloud cover and clear skies, which allow the unhindered penetration of solar radiation to the Earth's surface, intensifying the overall temperature. [6]

They also cover a large geographical area that has a greater atmospheric pressure than the surrounding regions. [6] The high-atmospheric pressure area acts like a lid on the atmosphere and causes warm air to be pushed to the surface and holding it there over extended durations. [6]

Heat domes allow maximum heating of the Earth as they allow penetration of sunshine to the surface of the Earth. [7]

Creation

Heat domes can arise in still and dry summer conditions, when a mass of warm air builds up, and the high pressure from the Earth's atmosphere pushes the warm air down. The air is then compressed, and as its net heat is now in a smaller volume, it increases in temperature. As the warm air attempts to rise, the high pressure above it acts as a dome, forcing the air down and causing it to get hotter and hotter, resulting in increased pressure below the dome. [8] [9]

The 2021 Northwest heat dome was formed in this way, as a stagnant high-pressure system intensified local temperatures, blocked cooling maritime breezes, and hindered cloud formation. This allowed uninterrupted solar radiation to further warm the air and the rising warm air was pushed back down by the high-pressure system, creating a self-sustaining cycle of heating. [10]

Increases in sea surface temperatures across the Northern Pacific, particularly off the coast of Washington, Oregon, and British Columbia, create favorable conditions for the formation of high atmospheric pressure domes, which can lead to the development of heat domes. [11]

Relationship to climate change

Studies indicate that human-induced climate change [12] plays a significant role in the formation of heat domes, as heat domes are more likely to occur in higher atmospheric temperatures. The occurrence of heat domes contributes to the positive feedback loop of increased climate change by resulting in overall higher atmospheric temperatures. [13]

Effects

Other weather events

Heat domes coincide with stagnant atmospheric conditions, exacerbating air quality issues. [14] Common byproducts include increased smog and pollution levels. [15] Heat domes can intensify heat waves by interacting with other weather systems, such as frontal boundaries. [16] They can also contribute to drought by increasing the rate of evaporation and reducing soil moisture. [17] In areas such as California's Central Valley, heat domes exacerbate drought conditions by increasing the rate of evaporation amongst crops and native vegetation. [18]

Ecosystem

Previous heat domes have been linked to the widespread damage of trees, primarily through high solar irradiation. [19] Alongside foliar scorching as a result of heat stress, the evolutionary creation and success of heat-resilient foliar species [19] were byproducts of heat domes.

Heat domes increase the thermal stress [20] of organisms living in intertidal ecosystems, a factor that has previously led to the deaths of marine species during the 2021 North American Heat Dome.

Community

The occurrence of heat domes has contributed to increasing climate change concerns. This was particularly demonstrated among British Columbians, who in previous studies displayed higher levels of climate change anxiety [21] following the 2021 North American Heat Dome.

Heat domes put communities at risk of increased mortality rates. Deaths resulting from heat domes are more likely to impact susceptible and marginalized populations, who are less likely to have access to air-conditioned living spaces. [22]

Notable events

The 2021 Western North America heat dome garnered its attention for its unprecedented intensity and duration in recent years which led to significant societal influences such as widespread power outages and increased wildfire activities. [19] This further emphasized the urgency of addressing climate change in order to reduce the occurrence and severity of such events. [23] [24] Addressing greenhouse gas emissions and adopting strategies are significant steps in lessening the frequency of extreme heat events in 2021.

In 2021, a record-breaking heat dome based in British Columbia caused 595 community deaths, a record for similar atmospheric events. [25] [22] Most households in the broader Vancouver lack air conditioning, resulting in individuals being highly susceptible to deaths caused by heat such as heat exhaustion and heat stroke. The study on this event emphasizes the importance of public health and providing more air conditioning and urban green spaces. [22]

Persistent heat dome led to extensive wildfires, crop failures, and a surge in mortality rates during the Russian heatwave in 2010. The far-reaching consequences affected by economic and social factors of this event reverberated globally, impacting the interconnectedness of regional weather phenomena and agricultural markets. [7]

Examples

The heat dome of the 2021 Western North America heat wave, over west Canada and the Northwest United States. The "high" pressure at left is the heat dome 500-mb pressure chart 2021-06-28 700EST Heat dome Pacific NW.png
The heat dome of the 2021 Western North America heat wave, over west Canada and the Northwest United States. The "high" pressure at left is the heat dome

Future

Research points to a projected increase in stationary waves circulating around North America following the occurrence of heat domes. [26] These are the same waves that lead to extreme heat events, indicating a higher likelihood [26] of similar events taking place in the future. Research studies have shown that the development of heat domes is generally improbable, [27] however the increasing level of concern surrounding the impact of climate change highlights that heat domes may no longer become a rare occurrence.

Mitigation

Techniques to mitigate the effects of heat domes often involve urban planning, [28] public health initiatives, and community interaction. Strategies include increasing green areas, [29] using cool roofs [30] and improving ventilation [31] in urban areas. Public agencies provide support to vulnerable populations, reducing adverse heat-related impacts through the following methods: heat health warning systems, [32] data monitoring, cooling centers, [33] water management, [34] and climate change suppression, [35] among other efforts. Educational campaigns increase awareness of heat safety, increasing the effectiveness of other mitigation methods. [36]

See also

Related Research Articles

<span class="mw-page-title-main">Climate</span> Long-term weather pattern of a region

Climate is the long-term weather pattern in a region, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorological variables that are commonly measured are temperature, humidity, atmospheric pressure, wind, and precipitation. In a broader sense, climate is the state of the components of the climate system, including the atmosphere, hydrosphere, cryosphere, lithosphere and biosphere and the interactions between them. The climate of a location is affected by its latitude, longitude, terrain, altitude, land use and nearby water bodies and their currents.

<span class="mw-page-title-main">Jet stream</span> Fast-flowing atmospheric air current

Jet streams are fast flowing, narrow air currents in the Earth's atmosphere.

<span class="mw-page-title-main">Urban heat island</span> Situation where cities are warmer than surrounding areas

Urban areas usually experience the urban heat island (UHI) effect, that is, they are significantly warmer than surrounding rural areas. The temperature difference is usually larger at night than during the day, and is most apparent when winds are weak, under block conditions, noticeably during the summer and winter. The main cause of the UHI effect is from the modification of land surfaces while waste heat generated by energy usage is a secondary contributor. Urban areas occupy about 0.5% of the Earth's land surface but host more than half of the world's population. As a population center grows, it tends to expand its area and increase its average temperature. The term heat island is also used; the term can be used to refer to any area that is relatively hotter than the surrounding, but generally refers to human-disturbed areas.

<span class="mw-page-title-main">Drought</span> Period with less precipitation than normal

A drought is a period of drier-than-normal conditions. A drought can last for days, months or years. Drought often has large impacts on the ecosystems and agriculture of affected regions, and causes harm to the local economy. Annual dry seasons in the tropics significantly increase the chances of a drought developing, with subsequent increased wildfire risks. Heat waves can significantly worsen drought conditions by increasing evapotranspiration. This dries out forests and other vegetation, and increases the amount of fuel for wildfires.

<span class="mw-page-title-main">Extreme weather</span> Unusual, severe or unseasonal weather

Extreme weather includes unexpected, unusual, severe, or unseasonal weather; weather at the extremes of the historical distribution—the range that has been seen in the past. Extreme events are based on a location's recorded weather history. They are defined as lying in the most unusual ten percent. The main types of extreme weather include heat waves, cold waves and heavy precipitation or storm events, such as tropical cyclones. The effects of extreme weather events are economic costs, loss of human lives, droughts, floods, landslides. Severe weather is a particular type of extreme weather which poses risks to life and property.

<span class="mw-page-title-main">Heat wave</span> Prolonged period of excessively hot weather

A heat wave or heatwave, sometimes described as extreme heat, is a period of abnormally hot weather. A time period of five consecutive days is often used to define a heat wave but the exact definition of a heat waves can vary for different countries. A heat wave is usually measured relative to the usual climate in the area and to normal temperatures for the season. Temperatures that humans from a hotter climate consider normal, can be regarded as a heat wave in a cooler area. This would be the case if the warm temperatures are outside the normal climate pattern for that area. High humidity often occurs during heat waves as well. This is especially the case in oceanic climate countries. Heat waves have become more frequent, and more intense over land, across almost every area on Earth since the 1950s, the increase in frequency and duration being caused by climate change.

The July 1995 Chicago heat wave led to 739 heat-related deaths in Chicago over a period of five days. Most of the victims of the heat wave were elderly poor residents of the city, who did not have air conditioning, or had air conditioning but could not afford to turn it on, and did not open windows or sleep outside for fear of crime. The heat wave also heavily impacted the wider Midwestern region, with additional deaths in both St. Louis, Missouri and Milwaukee, Wisconsin.

<span class="mw-page-title-main">El Niño–Southern Oscillation</span> Climate phenomenon that periodically fluctuates

El Niño–Southern Oscillation (ENSO) is a global climate phenomenon that emerges from variations in winds and sea surface temperatures over the tropical Pacific Ocean. Those variations have an irregular pattern but do have some semblance of cycles. The occurrence of ENSO is not predictable. It affects the climate of much of the tropics and subtropics, and has links (teleconnections) to higher-latitude regions of the world. The warming phase of the sea surface temperature is known as "El Niño" and the cooling phase as "La Niña". The Southern Oscillation is the accompanying atmospheric oscillation, which is coupled with the sea temperature change.

<span class="mw-page-title-main">Global dimming</span> Reduction in the amount of sunlight reaching Earths surface

Global dimming is a decline in the amount of sunlight reaching the Earth's surface. It is caused by atmospheric particulate matter, predominantly sulfate aerosols, which are components of air pollution. Global dimming was observed soon after the first systematic measurements of solar irradiance began in the 1950s. This weakening of visible sunlight proceeded at the rate of 4–5% per decade until the 1980s. During these years, air pollution increased due to post-war industrialization. Solar activity did not vary more than the usual during this period.

<span class="mw-page-title-main">Polar vortex</span> Persistent cold-core low-pressure area that circles one of the poles

A circumpolar vortex, or simply polar vortex, is a large region of cold, rotating air; polar vortices encircle both of Earth's polar regions. Polar vortices also exist on other rotating, low-obliquity planetary bodies. The term polar vortex can be used to describe two distinct phenomena; the stratospheric polar vortex, and the tropospheric polar vortex. The stratospheric and tropospheric polar vortices both rotate in the direction of the Earth's spin, but they are distinct phenomena that have different sizes, structures, seasonal cycles, and impacts on weather.

<span class="mw-page-title-main">Effects of climate change</span>

Effects of climate change are well documented and growing for Earth's natural environment and human societies. Changes to the climate system include an overall warming trend, changes to precipitation patterns, and more extreme weather. As the climate changes it impacts the natural environment with effects such as more intense forest fires, thawing permafrost, and desertification. These changes impact ecosystems and societies, and can become irreversible once tipping points are crossed. Climate activists are engaged in a range of activities around the world that seek to ameliorate these issues or prevent them from happening.

<span class="mw-page-title-main">Block (meteorology)</span> Large-scale patterns in the atmospheric pressure field that are nearly stationary

Blocks in meteorology are large-scale patterns in the atmospheric pressure field that are nearly stationary, effectively "blocking" or redirecting migratory cyclones. They are also known as blocking highs or blocking anticyclones. These blocks can remain in place for several days or even weeks, causing the areas affected by them to have the same kind of weather for an extended period of time. In the Northern Hemisphere, extended blocking occurs most frequently in the spring over the eastern Pacific and Atlantic Oceans. Whilst these events are linked to the occurrence of extreme weather events such as heat waves, particularly the onset and decay of these events is still not well captured in numerical weather forecasts and remains an open area of research.

Air stagnation is a meteorological condition that occurs when there is a lack of atmospheric movement, leading to the accumulation of pollutants and particles that can decline the air quality in a particular region. This condition typically correlates with air pollution and poor air quality due to the possible health risks it can cause to humans and the environment. Due to light winds and lack of precipitation, pollutants cannot be cleared from the air, either gaseous or particulate.

<span class="mw-page-title-main">Ocean heat content</span> Energy stored by oceans

Ocean heat content (OHC) or ocean heat uptake (OHU) is the energy absorbed and stored by oceans. To calculate the ocean heat content, it is necessary to measure ocean temperature at many different locations and depths. Integrating the areal density of a change in enthalpic energy over an ocean basin or entire ocean gives the total ocean heat uptake. Between 1971 and 2018, the rise in ocean heat content accounted for over 90% of Earth's excess energy from global heating. The main driver of this increase was caused by humans via their rising greenhouse gas emissions. By 2020, about one third of the added energy had propagated to depths below 700 meters.

<span class="mw-page-title-main">Polar amplification</span>

Polar amplification is the phenomenon that any change in the net radiation balance tends to produce a larger change in temperature near the poles than in the planetary average. This is commonly referred to as the ratio of polar warming to tropical warming. On a planet with an atmosphere that can restrict emission of longwave radiation to space, surface temperatures will be warmer than a simple planetary equilibrium temperature calculation would predict. Where the atmosphere or an extensive ocean is able to transport heat polewards, the poles will be warmer and equatorial regions cooler than their local net radiation balances would predict. The poles will experience the most cooling when the global-mean temperature is lower relative to a reference climate; alternatively, the poles will experience the greatest warming when the global-mean temperature is higher.

More than 1,030 people were killed in the 2002 heatwave in South India. Most of the dead were poor and elderly and a majority of deaths occurred in the southern state of Andhra Pradesh. In the districts that were impacted most, the heat was so severe that ponds and rivers evaporated and in those same districts birds had fallen from the sky and animals were collapsing from the intense heat.

<span class="mw-page-title-main">Effects of climate change on human health</span>

The effects of climate change on human health are profound because they increase heat-related illnesses and deaths, respiratory diseases, and the spread of infectious diseases. There is widespread agreement among researchers, health professionals and organizations that climate change is the biggest global health threat of the 21st century.

<span class="mw-page-title-main">Effects of climate change on agriculture</span>

There are numerous effects of climate change on agriculture, many of which are making it harder for agricultural activities to provide global food security. Rising temperatures and changing weather patterns often result in lower crop yields due to water scarcity caused by drought, heat waves and flooding. These effects of climate change can also increase the risk of several regions suffering simultaneous crop failures. Currently this risk is regarded as rare but if these simultaneous crop failures did happen they would have significant consequences for the global food supply. Many pests and plant diseases are also expected to either become more prevalent or to spread to new regions. The world's livestock are also expected to be affected by many of the same issues, from greater heat stress to animal feed shortfalls and the spread of parasites and vector-borne diseases.

<span class="mw-page-title-main">Climate change in Indonesia</span> Emissions, impacts and responses of Indonesia

Due to its geographical and natural diversity, Indonesia is one of the countries most susceptible to the impacts of climate change. This is supported by the fact that Jakarta has been listed as the world's most vulnerable city, regarding climate change. It is also a major contributor as of the countries that has contributed most to greenhouse gas emissions due to its high rate of deforestation and reliance on coal power.

<span class="mw-page-title-main">Marine heatwave</span> Unusually warm temperature event in the ocean it is really bad

A marine heatwave is a period of abnormally high sea surface temperatures compared to the typical temperatures in the past for a particular season and region. Marine heatwaves are caused by a variety of drivers. These include shorter term weather events such as fronts, intraseasonal events, annual, and decadal (10-year) modes like El Niño events, and human-caused climate change. Marine heatwaves affect ecosystems in the oceans. For example, marine heatwaves can lead to severe biodiversity changes such as coral bleaching, sea star wasting disease, harmful algal blooms, and mass mortality of benthic communities. Unlike heatwaves on land, marine heatwaves can extend over vast areas, persist for weeks to months or even years, and occur at subsurface levels.

References

  1. "What is a heat dome?". National Oceanic and Atmospheric Administration. June 30, 2021.
  2. Burga, Sulcyre (27 July 2023). "What to Know About Heat Domes—And How Long They Last". Time.
  3. Freedman, Andrew (July 25, 2019). "A Giant 'Heat Dome' Over Europe Is Smashing Temperature Records, And It's on The Move".
  4. "Extreme Heat | CISA". www.cisa.gov. Retrieved 2024-04-01.
  5. Lacroux, Margaux. "Qu'est-ce que le "dôme de chaleur" qui fait suffoquer le Canada ?". Libération (in French). Retrieved 2024-04-01.
  6. 1 2 3 Fan, Yifan; Li, Yuguo; Bejan, Adrian; Wang, Yi; Yang, Xinyan (2017-09-15). "Horizontal extent of the urban heat dome flow". Scientific Reports. 7 (1): 11681. Bibcode:2017NatSR...711681F. doi:10.1038/s41598-017-09917-4. ISSN   2045-2322. PMC   5601473 . PMID   28916810.
  7. 1 2 Zhang, Yan; Wang, Xiaoxue; Fan, Yifan; Zhao, Yongling; Carmeliet, Jan; Ge, Jian (2023-05-01). "Urban heat dome flow deflected by the Coriolis force". Urban Climate. 49: 101449. Bibcode:2023UrbCl..4901449Z. doi:10.1016/j.uclim.2023.101449. ISSN   2212-0955.
  8. Rosenthal, Zachary (26 July 2018). "What is a heat dome?".
  9. Fleming, Sean (29 June 2021). "What is the North American heat dome and how dangerous is it?".
  10. "2021 Northwest Heat Dome: Causes, Impacts and Future Outlook | USDA Climate Hubs". www.climatehubs.usda.gov. Retrieved 2024-04-01.
  11. "What to Know About Heat Domes—And How Long They Last". TIME. 2023-07-27. Retrieved 2024-04-01.
  12. "2021 Northwest Heat Dome: Causes, Impacts and Future Outlook | USDA Climate Hubs". www.climatehubs.usda.gov. Retrieved 2024-03-28.
  13. Chen, Ziming; Lu, Jian; Chang, Chuan-Chieh; Lubis, Sandro W.; Leung, L. Ruby (2023-11-21). "Projected increase in summer heat-dome-like stationary waves over Northwestern North America". npj Climate and Atmospheric Science. 6 (1): 194. Bibcode:2023npCAS...6..194C. doi: 10.1038/s41612-023-00511-2 . ISSN   2397-3722.
  14. "How Weather Affects Air Quality". 25 March 2024.
  15. Mickley, Loretta J. (July 2007). "A Future Short of Breath? Possible Effects of Climate Change on Smog". Environment: Science and Policy for Sustainable Development. 49 (6): 32–43. Bibcode:2007ESPSD..49f..32M. doi:10.3200/ENVT.49.6.34-43. ISSN   0013-9157.
  16. Zhang, Yuanjie; Wang, Liang; Santanello, Joseph A.; Pan, Zaitao; Gao, Zhiqiu; Li, Dan (2020-05-01). "Aircraft observed diurnal variations of the planetary boundary layer under heat waves". Atmospheric Research. 235: 104801. Bibcode:2020AtmRe.23504801Z. doi: 10.1016/j.atmosres.2019.104801 . ISSN   0169-8095.
  17. Lamaoui, Mouna; Jemo, Martin; Datla, Raju; Bekkaoui, Faouzi (2018). "Heat and Drought Stresses in Crops and Approaches for Their Mitigation". Frontiers in Chemistry. 6: 26. Bibcode:2018FrCh....6...26L. doi: 10.3389/fchem.2018.00026 . ISSN   2296-2646. PMC   5827537 . PMID   29520357.
  18. Mera, Roberto; Massey, Neil; Rupp, David E.; Mote, Philip; Allen, Myles; Frumhoff, Peter C. (2015-12-01). "Climate change, climate justice and the application of probabilistic event attribution to summer heat extremes in the California Central Valley". Climatic Change. 133 (3): 427–438. Bibcode:2015ClCh..133..427M. doi: 10.1007/s10584-015-1474-3 . ISSN   1573-1480.
  19. 1 2 3 "Causes of widespread foliar damage from the June 2021 Pacific Northwest Heat Dome: more heat than drought". academic.oup.com. 5 January 2023. Retrieved 2024-03-28.
  20. Raymond, Wendel W.; Barber, Julie S.; Dethier, Megan N.; Hayford, Hilary A.; Harley, Christopher D. G.; King, Teri L.; Paul, Blair; Speck, Camille A.; Tobin, Elizabeth D.; Raymond, Ann E. T.; McDonald, P. Sean (20 June 2022). "Assessment of the impacts of an unprecedented heatwave on intertidal shellfish of the Salish Sea". Ecology. 103 (10): e3798. Bibcode:2022Ecol..103E3798R. doi:10.1002/ecy.3798. ISSN   0012-9658. PMC   9786359 . PMID   35726191.
  21. Bratu, Andreea; Card, Kiffer G.; Closson, Kalysha; Aran, Niloufar; Marshall, Carly; Clayton, Susan; Gislason, Maya K.; Samji, Hasina; Martin, Gina; Lem, Melissa; Logie, Carmen H.; Takaro, Tim K.; Hogg, Robert S. (2022-05-01). "The 2021 Western North American heat dome increased climate change anxiety among British Columbians: Results from a natural experiment". The Journal of Climate Change and Health. 6: 100116. doi: 10.1016/j.joclim.2022.100116 . ISSN   2667-2782.
  22. 1 2 3 Henderson, Sarah B.; McLean, Kathleen E.; Lee, Michael J.; Kosatsky, Tom (February 2022). "Analysis of community deaths during the catastrophic 2021 heat dome: Early evidence to inform the public health response during subsequent events in greater Vancouver, Canada". Environmental Epidemiology. 6 (1): e189. doi:10.1097/EE9.0000000000000189. PMC   8835552 . PMID   35169667.
  23. Henderson, Sarah B.; McLean, Kathleen E.; Lee, Michael J.; Kosatsky, Tom (February 2022). "Analysis of community deaths during the catastrophic 2021 heat dome: Early evidence to inform the public health response during subsequent events in greater Vancouver, Canada". Environmental Epidemiology. 6 (1): e189. doi:10.1097/EE9.0000000000000189. PMC   8835552 . PMID   35169667.
  24. "2021 Northwest Heat Dome: Causes, Impacts and Future Outlook | USDA Climate Hubs". www.climatehubs.usda.gov. Retrieved 2024-04-07.
  25. https://bc.ctvnews.ca/595-people-died-due-to-b-c-s-extreme-summer-heat-latest-coroner-data-reveals-1.5646936#:~:text=The%20BC%20Coroners%20Service%20updated%20its%20data%20on,died%20from%20the%20heat%20than%20preliminary%20findings%20showed.
  26. 1 2 Chen, Ziming (21 November 2023). "Projected increase in summer heat-dome-like stationary waves over Northwestern North America". npj Climate and Atmospheric Science. 6 (1). Bibcode:2023npCAS...6..194C. doi: 10.1038/s41612-023-00511-2 .
  27. Mulkern, Anne (3 October 2023). "Deadly Heat Dome Was a 1-in-10,000-Year Event".
  28. Gago, E. J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. (2013-09-01). "The city and urban heat islands: A review of strategies to mitigate adverse effects". Renewable and Sustainable Energy Reviews. 25: 749–758. doi:10.1016/j.rser.2013.05.057. ISSN   1364-0321.
  29. Wong, Nyuk Hien; Yu, Chen (2005-09-01). "Study of green areas and urban heat island in a tropical city". Habitat International. 29 (3): 547–558. doi:10.1016/j.habitatint.2004.04.008. ISSN   0197-3975.
  30. Pisello, Anna Laura; Santamouris, Mattheos; Cotana, Franco (October 2013). "Active cool roof effect: impact of cool roofs on cooling system efficiency". Advances in Building Energy Research. 7 (2): 209–221. Bibcode:2013AdBER...7..209P. doi:10.1080/17512549.2013.865560. ISSN   1751-2549.
  31. Aynsley, Richard; Shiel, John J. (2017-05-04). "Ventilation strategies for a warming world". Architectural Science Review. 60 (3): 249–254. doi:10.1080/00038628.2017.1300764. ISSN   0003-8628.
  32. Kovats, R. Sari; Hajat, Shakoor (2008-04-01). "Heat Stress and Public Health: A Critical Review". Annual Review of Public Health. 29 (1): 41–55. doi:10.1146/annurev.publhealth.29.020907.090843. ISSN   0163-7525. PMID   18031221.
  33. Bedi, Neil Singh; Adams, Quinn H.; Hess, Jeremy J.; Wellenius, Gregory A. (September 2022). "The Role of Cooling Centers in Protecting Vulnerable Individuals from Extreme Heat". Epidemiology. 33 (5): 611–615. doi:10.1097/EDE.0000000000001503. ISSN   1044-3983. PMC   9378433 . PMID   35706096.
  34. Richards, Daniel R.; Edwards, Peter J. (2018-07-04). "Using water management infrastructure to address both flood risk and the urban heat island". International Journal of Water Resources Development. 34 (4): 490–498. Bibcode:2018IJWRD..34..490R. doi:10.1080/07900627.2017.1357538. ISSN   0790-0627.
  35. Peng, Roger D.; Bobb, Jennifer F.; Tebaldi, Claudia; McDaniel, Larry; Bell, Michelle L.; Dominici, Francesca (May 2011). "Toward a Quantitative Estimate of Future Heat Wave Mortality under Global Climate Change". Environmental Health Perspectives. 119 (5): 701–706. doi:10.1289/ehp.1002430. ISSN   0091-6765. PMC   3094424 . PMID   21193384.
  36. Hasan, Fariha; Marsia, Shayan; Patel, Kajal; Agrawal, Priyanka; Razzak, Junaid Abdul (January 2021). "Effective Community-Based Interventions for the Prevention and Management of Heat-Related Illnesses: A Scoping Review". International Journal of Environmental Research and Public Health. 18 (16): 8362. doi: 10.3390/ijerph18168362 . ISSN   1660-4601. PMC   8394078 . PMID   34444112.