Helicopter Cube

Last updated
Meffert's Helicopter Cube, black body Helicube-black.jpg
Mèffert's Helicopter Cube, black body

The Helicopter Cube is a Rubik's Cube-like puzzle invented by Adam G. Cowan in 2005 and built in 2006. [1] [2] [3] [4] [5] [6] [7] It is also in the shape of a cube. At first glance, the Helicopter Cube may seem like a combination of the 2x2x2 and the Skewb, but it actually cuts differently, and twists around cube edges rather than cube faces. The purpose of the puzzle is to scramble the colors, and then restore them back to their original state of a single color per face.

Contents

Description

Helicopter cube, scrambled Helicube-scrambled.jpg
Helicopter cube, scrambled

The Helicopter Cube is made in the shape of a cube, cut into 8 corner pieces and 24 face center pieces. Each corner piece has 3 colors, and each face center piece has only a single color. Unlike the Rubik's Cube, its faces do not rotate; rather, the pieces are scrambled by rotating around a cube edge.

When twisting the puzzle, a 180° turn exchanges two corner pieces and swaps two pairs of face center pieces, but preserves the cube shape. The entire puzzle can be scrambled in this way.

However, it is also possible to twist an edge by ~71°, such that the base of two groups of a corner piece and a face center piece each is aligned with the rotational plane of a different edge. The second edge can then be rotated, thus intermixing the corner pieces and the face center pieces and leaving the puzzle in a non-cubical shape. This kind of intermixing is known as a jumbling move. Due to the differing shapes of the intermixed pieces, some rotations possible in the cubical shape may no longer be possible in the jumbled shape. By using a combination of such "jumbling" moves, it is possible to return to cubical shape but with some face center pieces in the wrong orientation, thus jutting outwards like spikes rather than lie flat on the face of the cube. More subtle changes may also be introduced, which are described later.

There are four variants of the Helicopter Cube:

The ~71deg turn in preparation for a jumbling move Helicube-jumbling-1.jpg
The ~71° turn in preparation for a jumbling move
The start of a jumbling move Helicube-jumbling-2.jpg
The start of a jumbling move
Thoroughly jumbled helicopter cube Helicube-4.jpg
Thoroughly jumbled helicopter cube

Solutions

Meffert's Helicopter Cube, white body, solved Helicube-white.jpg
Mèffert's Helicopter Cube, white body, solved

If the puzzle is only scrambled using 180° twists, then it is solvable using only 180° twists. However, if some jumbling moves were made, even if the puzzle was subsequently returned to cube shape, it may not be possible to solve it using only 180° twists. The reason for this is that using only 180° twists, each face center piece can only be permuted within a 6-member cycle, often referred to as its orbit . [6] Face center pieces in different orbits cannot be interchanged using only 180° twists. However, jumbling moves are able to permute face center pieces between different orbits, thus leaving the puzzle in a state that cannot be solved by 180° twists alone.

Number of combinations

Assume that Helicopter Cube is scrambled without jumbling moves (i.e. mixed with only 180 degree twists). Any permutation of the corners is possible, including odd permutations. Seven of the corners can be independently rotated, and the orientation of the eighth depends on the other seven, giving 8!×37 combinations.

There are 24 face centers, which can be arranged in 24! different ways. But the face centers actually occur in 4 distinct orbits, each containing all colours. So the number of permutations is reduced to 6!4 arrangements. [8] The permutation of the face centers is even, the number of permutations is divided by 2.

Assuming the cube does not have a fixed orientation in space, and that the permutations resulting from rotating the cube without twisting it are considered identical, the number of permutations is reduced by a factor of 24. This is because all 24 possible positions and orientations of the first corner are equivalent because of the lack of fixed centres. This factor does not appear when calculating the permutations of N×N×N cubes where N is odd, since those puzzles have fixed centres which identify the cube's spatial orientation.

This gives a total number of permutations of

The expanded number is 493694233804800000 (approximately 494 billiard on the long scale or 494 quadrillion on the short scale). [6]

When a Helicopter Cube is scrambled with jumbling moves but still retains its cube shape, then face centers do not occur in 4 distinct orbits. Assuming that the four centres of each colour are indistinguishable, the number of permutations is reduced to 24!/(4!6) arrangements. The reducing factor comes about because there are 24 (4!) ways to arrange the four pieces of a given colour. This is raised to the sixth power because there are six colours.

This gives a total number of permutations of

The expanded number is 11928787020628077600000 (approximately 11929 trillion or 12 trilliard on the long scale or 12 sextillion on the short scale) [8]

To count non-cube positions, we need to count all the possible shapes (ignoring the colours). Counting those shapes is tricky, since sometimes moves are blocked purely due to the shape of the pieces rather than the underlying mechanism. Matt Galla has done a full analysis, and wrote up his results in this post on TwistyPuzzles Forum. I have reproduced and verified his results. He found 14,098 shapes, or 28,055 if mirror images are counted too. Some of these have symmetry however, and therefore occur in fewer than 24 (or 48) possible orientations. Here is a breakdown of those symmetries: [8]

Mr4r3r2.gif Mr3r2.gif R3r2.gif Mfr2e.gif Mer2e.gif R2er2e.gif M4.gif Me.gif R2e.gif R2f.gif Mc.gif I.gif
Sym. mr4r3r2mr3r2r3r2mfr2emer2er2er2em4mer2er2fmciTotal
Intl OhD3dD3C2vC2hD2S4CsC2C2S2C1
Schön. m3m3m322mm22/m2224m2211
Order48126444422221
Index148121212122424242448
Shapes
mirror image
118118418276453713,17614,098
111611881821,528103726,35228,055
Total141281221696121,96836,6722408881,264,8961,305,133

The row marked Order shows the sizes of the symmetry groups. The Index is the index of the symmetry group as a subgroup of the full cubic symmetry group, i.e. it is 48 divided by the order. The index is also the number of ways any particular shape with that symmetry can be oriented in space (including reflections). The first Shapes row lists the number of shapes that Matt found for each symmetry group but not counting mirror images, and the second Shapes row includes the mirror image shapes in its count. The row marked Total is the product of the index and the number of shapes. [8]

Multiplying this with the previous result gives 15568653590593384802320800000 (approximately 15569 quadrillion or 15 quadrilliard on the long scale or 15 octillion on the short scale) jumbled positions altogether. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Rubik's Revenge</span> 4×4×4 Rubiks cube variation

The Rubik's Revenge is a 4×4×4 version of the Rubik's Cube. It was released in 1981. Invented by Péter Sebestény, the cube was nearly called the Sebestény Cube until a somewhat last-minute decision changed the puzzle's name to attract fans of the original Rubik's Cube. Unlike the original puzzle, it has no fixed facets: the centre facets are free to move to different positions.

<span class="mw-page-title-main">Speedcubing</span> Solving Rubiks Cubes or other "twisty puzzles" with speed

Speedcubing is a competitive sport involving solving a variety of combination puzzles, the most famous being the 3x3x3 puzzle or Rubik's Cube, as quickly as possible. A person who practices solving twisty puzzles competitively is known as a speedcuber, or a cuber. For most puzzles, solving involves performing a series of moves, known as algorithms, that alters a scrambled puzzle into a solved state, in which every face of the puzzle is a single, solid color.

<span class="mw-page-title-main">Professor's Cube</span> 5x5x5 version of the Rubiks Cube

The Professor's Cube is a 5×5×5 version of the original Rubik's Cube. It has qualities in common with both the 3×3×3 Rubik's Cube and the 4×4×4 Rubik's Revenge, and solution strategies for both can be applied.

<span class="mw-page-title-main">Square-1 (puzzle)</span> Shape-shifting puzzle similar to Rubiks Cube

The Square-1 is a variant of the Rubik's Cube. Its distinguishing feature among the numerous Rubik's Cube variants is that it can change shape as it is twisted, due to the way it is cut, thus adding an extra level of challenge and difficulty. The Super Square One and Square Two puzzles have also been introduced. The Super Square One has two additional layers that can be scrambled and solved independently of the rest of the puzzle, and the Square Two has extra cuts made to the top and bottom layer, making the edge and corner wedges the same size.

<span class="mw-page-title-main">Megaminx</span> Puzzle

The Megaminx or Mégaminx is a dodecahedron-shaped puzzle similar to the Rubik's Cube. It has a total of 50 movable pieces to rearrange, compared to the 20 movable pieces of the Rubik's Cube.

<span class="mw-page-title-main">Skewb Diamond</span>

The Skewb Diamond is an octahedron-shaped combination puzzle similar to the Rubik's Cube. It has 14 movable pieces which can be rearranged in a total of 138,240 possible combinations. This puzzle is the dual polyhedron of the Skewb. It was invented by Uwe Mèffert, a German puzzle inventor and designer.

<span class="mw-page-title-main">Rubik's Cube group</span> Mathematical group

The Rubik's Cube group is a group that represents the structure of the Rubik's Cube mechanical puzzle. Each element of the set corresponds to a cube move, which is the effect of any sequence of rotations of the cube's faces. With this representation, not only can any cube move be represented, but also any position of the cube as well, by detailing the cube moves required to rotate the solved cube into that position. Indeed with the solved position as a starting point, there is a one-to-one correspondence between each of the legal positions of the Rubik's Cube and the elements of . The group operation is the composition of cube moves, corresponding to the result of performing one cube move after another.

<span class="mw-page-title-main">Skewb</span> Puzzle

The Skewb is a combination puzzle and a mechanical puzzle in the style of the Rubik's Cube. It was invented by Tony Durham and marketed by Uwe Mèffert. Although it is cubical in shape, it differs from Rubik's construction in that its axes of rotation pass through the corners of the cube rather than the centres of the faces. There are four such axes, one for each space diagonal of the cube. As a result, it is a deep-cut puzzle in which each twist affects all six faces.

<span class="mw-page-title-main">Skewb Ultimate</span>

The Skewb Ultimate, originally marketed as the Pyraminx Ball, is a twelve-sided puzzle derivation of the Skewb, produced by German toy-maker Uwe Mèffert. Most versions of this puzzle are sold with six different colors of stickers attached, with opposite sides of the puzzle having the same color; however, some early versions of the puzzle have a full set of 12 colors.

<span class="mw-page-title-main">Pyramorphix</span>

The Pyramorphix, also called Pyramorphinx, is a tetrahedral puzzle similar to the Rubik's Cube. It has a total of 8 movable pieces to rearrange, compared to the 20 of the Rubik's Cube. Although it looks like a trivially simple version of the Pyraminx, it is an edge-turning puzzle with the mechanism identical to that of the Pocket Cube.

<span class="mw-page-title-main">V-Cube 6</span> 6×6×6 Rubiks Cube

The V-Cube 6 is a 6×6×6 version of the original Rubik's Cube. The first mass-produced 6×6×6 was invented by Panagiotis Verdes and is produced by the Greek company Verdes Innovations SA. Other such puzzles have since been introduced by a number of Chinese companies, most of which have mechanisms which improve on the original. Unlike the original puzzle, it has no fixed facets: the center facets are free to move to different positions.

<span class="mw-page-title-main">V-Cube 7</span> Larger variant of the Rubiks cube

The V-Cube 7 is a combination puzzle in the form of a 7×7×7 cube. The first mass-produced 7×7×7 was invented by Panagiotis Verdes and is produced by the Greek company Verdes Innovations SA. Other such puzzles have since been introduced by a number of Chinese companies, some of which have mechanisms which improve on the original. Like the 5×5×5, the V-Cube 7 has both fixed and movable center facets.

<span class="mw-page-title-main">Pyraminx Crystal</span>

The Pyraminx Crystal is a dodecahedral puzzle similar to the Rubik's Cube and the Megaminx. It is manufactured by Uwe Mèffert and has been sold in his puzzle shop since 2008.

<span class="mw-page-title-main">Void Cube</span> 3x3x3 without centers

The Void Cube is a 3-D mechanical puzzle similar to a Rubik's Cube, with the notable difference being that the center pieces are missing, which causes the puzzle to resemble a level 1 Menger sponge. The core used on the Rubik's Cube is also absent, creating holes straight through the cube on all three axes. Due to the restricted volume of the puzzle it employs an entirely different structural mechanism from a regular Rubik's Cube, though the possible moves are the same. The Void Cube was invented by Katsuhiko Okamoto. Gentosha Education, in Japan, holds the license to manufacture official Void Cubes. These official designs are also sold under the Rubik's brand, owned by Spin Master Ltd., and workalikes are available from a variety of manufacturers. Speed-solving the Void Cube is common in exhibition but is not an official World Cube Association competition event.

<span class="mw-page-title-main">Alexander's Star</span> Combination puzzle

Alexander's Star is a puzzle similar to the Rubik's Cube, in the shape of a great dodecahedron.

<span class="mw-page-title-main">Tuttminx</span>

A Tuttminx is a Rubik's Cube-like twisty puzzle, in the shape of a truncated icosahedron. It was invented by Lee Tutt in 2005. It has a total of 150 movable pieces to rearrange, compared to 20 movable pieces of the Rubik’s Cube.

<span class="mw-page-title-main">Pyraminx Duo</span>

The Pyraminx Duo is a tetrahedral twisty puzzle in the style of the Rubik's Cube. It was suggested by Rob Stegmann, invented by Oskar van Deventer, and has now been mass-produced by Meffert's.

<span class="mw-page-title-main">Nine-Colour Cube</span>

The Nine-Colour Cube is a cubic twisty puzzle. It was invented in 2005 by Milan Vodicka and mass-produced by Meffert's seven years later. Mechanically, the puzzle is identical to the Rubik's Cube; however, unlike the Rubik's Cube, which only has 6 different colours, the Nine-Colour Cube has 9 colours, with the individual pieces having one colour each.

<span class="mw-page-title-main">V-Cube 8</span> 8×8×8 version of Rubiks Cube

The V-Cube 8 is an 8×8×8 version of the Rubik's Cube. Unlike the original puzzle, it has no fixed facets: the center facets are free to move to different positions. The design was covered by Panagiotis Verdes' patent from 2007 but Verdes Innovations SA did not produce it for sale until 2014. Other 8×8×8 cubes are produced by various Chinese companies.

<span class="mw-page-title-main">Dino Cube</span>

The Dino Cube is a cubic twisty puzzle in the style of the Rubik's Cube. It was invented in 1985 by Robert Webb, though it was not mass-produced until ten years later. It has a total of 12 external movable pieces to rearrange, compared to 20 movable pieces on the Rubik's Cube.

References

  1. "Helicopter Cubes Black body". Mèffert's. Archived from the original on 2011-07-14. Retrieved 2010-09-01. The Helicopter Cube was conceived by Adam G. Cowan in 2005, but wasn't built until 2006, when Adam discovered that 3D printing could be used to realize the parts.
  2. "Helicopter Cube - White Body". Puzzle Master Inc. Archived from the original on 2011-07-06. Retrieved 2010-09-01.
  3. Goetz Schwandtner. "Helicopter Cube white". Extremely Puzzling. Retrieved 2010-09-01. Designed by: Adam Cowan
  4. 1 2 Tom van der Zanden. "Curvy Copter" . Retrieved 2010-09-01. The Curvy Copter is my most popular puzzle yet. It is a variation on Adam G. Cowan's Helicopter Cube.
  5. "System of twisty puzzles". Archived from the original on 2010-08-07. Retrieved 2010-09-01. Helicopter Cube was designed and built by Adam G. Cowan (Puzzlemaster42) and Katsuhiko Okamoto (Katsuhiko) in 2007
  6. 1 2 3 "L'Helicopter Cube (French)". fan2cube. Retrieved 2010-09-01.
  7. Jason Smith. "Adam Cowan's Helicopter Cube Mass Production – 4/2010". Puzzle Forge. Retrieved 2010-09-01.
  8. 1 2 3 4 5 Scherphuis, Jaap (12 December 2017). "Helicopter Cube".