This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Part of a series on |
Puzzles |
---|
A combination puzzle, also known as a sequential move puzzle, is a puzzle which consists of a set of pieces which can be manipulated into different combinations by a group of operations. Many such puzzles are mechanical puzzles of polyhedral shape, consisting of multiple layers of pieces along each axis which can rotate independently of each other. Collectively known as twisty puzzles, the archetype of this kind of puzzle is the Rubik's Cube. Each rotating side is usually marked with different colours, intended to be scrambled, then solved by a sequence of moves that sort the facets by colour. Generally, combination puzzles also include mathematically defined examples that have not been, or are impossible to, physically construct.
A combination puzzle is solved by achieving a particular combination starting from a random (scrambled) combination. Often, the solution is required to be some recognisable pattern such as "all like colours together" or "all numbers in order". The most famous of these puzzles is the original Rubik's Cube, a cubic puzzle in which each of the six faces can be independently rotated. Each of the six faces is a different colour, but each of the nine pieces on a face is identical in colour in the solved condition. In the unsolved condition, colours are distributed amongst the pieces of the cube. Puzzles like the Rubik's Cube which are manipulated by rotating a section of pieces are popularly called twisty puzzles. They are often face-turning, but commonly exist in corner-turning and edge-turning varieties.
The mechanical construction of the puzzle will usually define the rules by which the combination of pieces can be altered. This leads to some limitations on what combinations are possible. For instance, in the case of the Rubik's Cube, there are a large number of combinations that can be achieved by randomly placing the coloured stickers on the cube, but not all of these can be achieved by manipulating the cube rotations. Similarly, not all the combinations that are mechanically possible from a disassembled cube are possible by manipulation of the puzzle. Since neither unpeeling the stickers nor disassembling the cube is an allowed operation, the possible operations of rotating various faces limit what can be achieved.
Although a mechanical realization of the puzzle is usual, it is not actually necessary. It is only necessary that the rules for the operations are defined. The puzzle can be realized entirely in virtual space or as a set of mathematical statements. In fact, there are some puzzles that can only be realized in virtual space. An example is the 4-dimensional 3×3×3×3 tesseract puzzle, simulated by the MagicCube4D software.
There have been many different shapes of Rubik type puzzles constructed. As well as cubes, all of the regular polyhedra and many of the semi-regular and stellated polyhedra have been made.
A cuboid is a rectilinear polyhedron. That is, all its edges form right angles. Or in other words (in the majority of cases), a box shape. A regular cuboid, in the context of this article, is a cuboid puzzle where all the pieces are the same size in edge length. Pieces are often referred to as "cubies".
Picture | Data | Comments |
---|---|---|
Commercial name: Pocket Cube | Simpler to solve than the standard cube in that only the algorithms for the corner pieces are required. It is nevertheless surprisingly non-trivial to solve. | |
Commercial name: Rubik's Cube | The original Rubik's Cube | |
Commercial name: Rubik's Revenge | Solution is much the same as 3×3×3 cube except additional (and relatively simple) algorithm(s) are required to unscramble the centre pieces and edges and additional parity not seen on the 3x3x3 Rubik's Cube. | |
Commercial name: Professor's Cube | Solution is much the same as 3×3×3 cube except additional (and relatively simple) algorithm(s) are required to unscramble the centre pieces and edges. | |
Commercial name: V-CUBE | Panagiotis Verdes holds a patent to a method which is said to be able to make cubes up to 11×11×11. He has fully working products for 2×2×2 - 9×9×9 cubes. | |
4-Dimensional puzzle | This is the 4-dimensional analog of a cube and thus cannot actually be constructed. However, it can be drawn or represented by a computer. Significantly more difficult to solve than the standard cube, although the techniques follow much the same principles. There are many other sizes of virtual cuboid puzzles ranging from the trivial 3×3 to the 5-dimensional 7×7×7×7×7 which has only been solved twice so far. [1] However, the 6×6×6×6×6 has only been solved once, since its parity does not remain constant (due to not having proper center pieces) | |
Non-uniform cuboids | Most of the puzzles in this class of puzzle are generally custom made in small numbers. Most of them start with the internal mechanism of a standard puzzle. Additional cubie pieces are then added, either modified from standard puzzles or made from scratch. The four shown here are only a sample from a very large number of examples. Those with two or three different numbers of even or odd rows also have the ability to change their shape. The Tower Cube was manufactured by Chronos and distributed by Japanese company Gentosha Education; it is the third "Okamoto Cube" (invented by Katsuhiko Okamoto). It does not change form, and the top and bottom colours do not mix with the colours on the sides. | |
Siamese cubes | Siamese cubes are two or more puzzles that are fused so that some pieces are common to both cubes. The picture here shows two 3×3×3 cubes that have been fused. The largest example known to exist is in The Puzzle Museum [8] and consists of three 5×5×5 cubes that are siamese fused 2×2×5 in two places. there is also a "2 3x3x3 fused 2x2x2" version called the fused cube. The first Siamese cube was made by Tony Fisher in 1981. [9] This has been credited as the first example of a "handmade modified rotational puzzle". [9] | |
Commercial name: Void cube | Solutions to this cube is similar to a regular 3x3x3 except that odd-parity combinations are possible with this puzzle. This cube uses a special mechanism due to absence of a central core. | |
Commercial name: | The inner circles of a Crazy cube 4x4x4 move with the second layer of each face. On a crazy cube type I, they are internally connected in such a way that they essentially move as 8 distinct pieces, not 24. To solve such a cube, think of it as a 2x2x2 (pocket cube) trapped inside a 4x4x4 (Rubik's Revenge). Solve the 2x2x2 first, then solve the 4x4x4 by making exchanges only. Solving the type II is much more difficult. | |
Commercial name: Over The Top Geometric shape: Cube | Experimental cube made by 3-D printing of plastic invented by Oskar van Deventer. Corners are much larger in proportion, and edge pieces match that larger dimension; they are narrow, and do not resemble cubes. The rest of the cubelets are 15x15 arrays on each side of the whole cube; as planned, they would be only 4 mm on a side. The original mechanism is a 3x3x3 core, with thin "vanes" for the center edges; the rest of the cubelets fill in the gaps. The core has a sphere at its center. As of 2023 it is being mass produced by the Chinese companies YuXin and Shengshou. [10] |
There are many puzzles which are mechanically identical to the regular cuboids listed above but have variations in the pattern and colour of design. Some of these are custom made in very small numbers, sometimes for promotional events. The ones listed in the table below are included because the pattern in some way affects the difficulty of the solution or is notable in some other way.
Picture | Data | Comments |
---|---|---|
Commercial name: Calendar Cube | Mechanically identical to the standard 3×3×3 cube, but with specially printed stickers for displaying the date. Much easier to solve since five of the six faces are ignored. Ideal produced a commercial version during the initial cube craze. Sticker sets are also available for converting a normal cube into a calendar. | |
Commercial Name: Magic Cube | Mechanically identical to the standard 3×3×3 cube. However, the numbers on the centre pieces force the solver to become aware that each one can be in one of four orientations, thus hugely increasing the total number of combinations. The number of combinations of centre face orientations is 46. However, odd combinations (overall odd number of rotations) of the centre faces cannot be achieved with legal operations. The increase is therefore x211 over the original making the total approximately 1024 combinations. This adds to the difficulty of the puzzle but not astronomically; only one or two additional algorithms are required to affect a solution. Note that the puzzle can be treated as a number magic square puzzle on each of the six faces with the magic constant being 15 in this case. |
The Sudoku Cube or Sudokube is a variation on a Rubik's Cube in which the aim is to solve one or more Sudoku puzzles on the sides or rows. The toy was originally created in 2006 by Jay Horowitz in Sebring, Ohio. [11] It was subsequently produced in China, marketed and sold internationally.
The Sudoku Cube was invented by veteran toy maker Jay Horowitz, a puzzle inventor who primarily reproduced older toys for the collectibles market. [12] [13] Horowitz first encountered the original Sudoku puzzle when a woman sitting next to him on a plane ride explained it to him. [12] After being introduced to the puzzle, Horowitz wanted to introduce the puzzle to the games business, and had the idea of combining it with the Rubik's cube. [13] Horowitz already had access to molds for the Rubik's Cube, as he owned the Ideal Toy Company which owned molds. [12] [13] Horowitz worked for a month until he figured out how to combine the two puzzles together, and then when he figured it out, he "did not sleep for three days" while he worked out how to best arrange the numbers to create 18 unique Sudoku puzzles within the cube. [13] Horowitz then patented the numerical design that he created. [13] [14] Mass production was completed in China by American Classic Toy Inc, a company belonging to Horowitz. [12] [13] The product was sold in the United States in retailers such as Barnes & Noble and FAO Schwarz and sold for $9.87 each. [13] The price was chosen specifically because each number only appears once. [13]
Horowitz promoted his new product in at toy fairs such as the 2007 American International Toy Fair and Hong Kong Toys and Games Fair. [12] [13] Adrienne Citrin, the spokeswoman for the Toy Industry Association, mentioned that Sudoku fans who felt like they had mastered the original paper version of the puzzle were interested in the new product. [13] The product was originally launched in the US and then sold internationally, exporting to Spain, France, South Africa and the United Kingdom. [13] Shortly after release, there were several imitator products sold on Amazon under the name "Sudokube". [12]
An irregular cuboid, in the context of this article, is a cuboid puzzle where not all the pieces are the same size in edge length. This category of puzzle is often made by taking a larger regular cuboid puzzle and fusing together some of the pieces to make larger pieces. In the formulae for piece configuration, the configuration of the fused pieces is given in brackets. Thus, (as a simple regular cuboid example) a 2(2,2)x2(2,2)x2(2,2) is a 2×2×2 puzzle, but it was made by fusing a 4×4×4 puzzle. Puzzles which are constructed in this way are often called "bandaged" cubes. However, there are many irregular cuboids that have not (and often could not) be made by bandaging.
Picture | Data | Comments |
---|---|---|
Commercial name: Skewb | Similar to the original Rubik's Cube, the Skewb differs in that its four axes of rotation pass through the corners of the cube rather than the centres of the faces. As a result, it is a deep-cut puzzle in which each twist scrambles all six faces. | |
Bandaged Cubes | This is a simple example of one a large number of bandaged cube types that have been made. A bandaged cube is a cube where some of the pieces are stuck together. | |
Commercial name: Square One | A variation on the original Rubik's Cube where it can be turned in such a manner as to distort the cubical shape of the puzzle. The Square One consists of three layers. The upper and lower layers contain kite and triangular pieces. The middle layer contains two trapezoid pieces, which together may form an irregular hexagon or a square. Square One is an example of another very large class of puzzle — cuboid puzzles which have cubies that are not themselves all cuboid. | |
Golden Cube | Commercial name: Tony Fisher's Golden Cube | First rotational puzzle created that has just one colour, [9] requiring the solver to restore the puzzle to its original cube form without colour aids. |
Commercial name: Lan Lan Rex Cube (Flower Box) | ||
Commercial name: Mixup Cube | Invented by Oskar van Deventer, it looks like a disproportional Rubik's Cube, but it allows the middle layer to turn 45 degrees and swap center pieces with edge pieces. |
Picture | Data | Comments |
---|---|---|
Commercial Name: Pyraminx | Tetrahedral-shaped puzzle with axes on the corners and trivial tips. It was invented in 1970 by Uwe Mèffert. | |
Commercial Name: Pyramorphix | Edge turning tetrahedron shaped puzzle with a 2×2×2 cube mechanism. | |
Commercial Name: Megaminx | 12-sided polyhedron puzzle similar to Rubik's Cube in operation and solution. | |
Commercial Name: Gigaminx, Teraminx, Petaminx | Megaminx variants with multiple layers per face. The Gigaminx has 2 layers per face, for a total of 5 layers per edge; the Teraminx has 3 layers per face, 7 layers per edge; and the Petaminx has 4 layers per face, 9 layers per edge. | |
Commercial Name: Impossiball | Rounded icosahedron puzzle similar to Pocket Cube in operation and solution. | |
Commercial Name: Alexander's Star | 12-sided Nonconvex uniform polyhedron puzzle similar to Rubik's Cube in operation and solution. | |
Commercial Name: BrainTwist | The BrainTwist is a unique tetrahedral puzzle with an ability to "flip", showing only half of the puzzle at a time. | |
Commercial Name: Dogic | The Dogic is an icosahedron cut into 60 triangular pieces around its 12 tips and 20 face centers. | |
Commercial Name: Skewb Diamond | An octahedral variation on the Skewb, it is a deep-cut puzzle very similar to the Skewb and is a dual-polyhedron transformation. | |
Commercial Name: Skewb Ultimate | While appearing more difficult than the Skewb Diamond, it is functionally very similar to the Skewb and Skewb Diamond. The puzzle is cut in a different manner but the same solutions can be used to solve it by identifying what pieces are equivalent. Because faces of the Skewb Diamond correspond to corners of the Skewb Ultimate, an additional constraint on the orientation of these pieces appears. Any Skewb Diamond solution thus requires a few additions in order to solve the Skewb Ultimate. | |
Commercial Name: Pyraminx Crystal | A dodecahedron cut into 20 corner pieces and 30 edge pieces. It is similar to the Megaminx, but is deeper cut, giving edges that behave differently from the Megaminx's edges when twisted. | |
Commercial Name: Magic 120-cell | Virtual 4-dimensional puzzle, the 4-D analogue of the Megaminx. |
Picture | Data | Comments |
---|---|---|
Name: holey burr puzzles with level > 1 | A holey burr puzzle is characterised by internal holes, which usually allow for sliding movements of individual pieces or groups of pieces. The level of a holey burr puzzle specifies how many sliding movements are necessary to assemble or disassemble the puzzle. | |
Commercial Name: Minus Cube | The Minus Cube is a 3D mechanical variant of the n-puzzle. It consists of a bonded transparent plastic box containing seven small cubes. There is an empty space the size of one small cube inside the box and the small cubes are moveable inside the box by tilting the box causing a cube to fall into the space. | |
Commercial Name: Rubik's Clock | Rubik's Clock is a two-sided puzzle, each side presenting nine clocks to the puzzler. There are four wheels, one at each corner of the puzzle, each allowing the corresponding corner clock to be rotated directly. There are also four pins next to the center clock, which control the rotation of the four adjacent clock faces. | |
Commercial Name: Rubik's Snake | Some would not count this as a combinational puzzle though it bears the Rubik name. Also known as Rubik's Twist. There is no one solution to this puzzle but multiple different shapes can be made. [15] | |
Commercial Name: Snake Cube | The cubelets are connected by an elastic band running through them. They can rotate freely. The aim of the puzzle is to arrange the chain in such a way that they will form 3 x 3 x 3 or 4 x 4 x 4 cube. |
Picture | Data | Comments |
---|---|---|
Sliding piece puzzle | These ubiquitous puzzles come in many sizes and designs. The traditional design is with numbers and the solution forms a magic square. There have been many different designs, the example shown here uses graphic symbols instead of numbers. The solution requires that there are no repeated symbols in any row, column or diagonal. The picture shows the puzzle unsolved. | |
Sliding piece puzzle with picture | Mechanically, no different from the puzzle above. However, the picture on the pieces gives it something of the nature of a jigsaw puzzle, in addition to being a combination puzzle. Note that the picture consists of a multitude of polyhedra which have been made into Rubik puzzles. | |
Fifteen puzzle | The original sliding piece puzzle. | |
Rubik's Magic | Not entirely 2D. Involves flipping parts back onto itself. | |
Rubik's Master Magic | The five ringed version of the Rubik's Magic | |
Commercial name:2D Magic Cube | Another virtual puzzle in the Rubik series, but this time a very simple one. | |
Klotski | A traditional sliding piece puzzle. There are now endless variations of this original puzzle implemented as computer games. | |
Geranium | A rotating piece puzzle. Some rank its difficulty very high compared to complex 3D puzzles. [16] There are other versions of this puzzle type including "Mini", "Pocket" and "Super", which have 2, 3 and 10 intersecting circles. There is an "Upgrade" mod which splits some of the large pieces into smaller ones. This puzzle's current production status is unknown. |
Picture | Data | Comments |
---|---|---|
Gear Cube | This twisty puzzle was invented by Oskar van Deventer. Edge pieces are gears that turn when faces turn and force opposite faces to turn together. Despite its appearance it is considered easier than the Rubik's Cube. |
The Rubik's Cube is a 3D combination puzzle invented in 1974 by Hungarian sculptor and professor of architecture Ernő Rubik. Originally called the Magic Cube, the puzzle was licensed by Rubik to be sold by Pentangle Puzzles in the UK in 1978, and then by Ideal Toy Corp in 1980 via businessman Tibor Laczi and Seven Towns founder Tom Kremer. The cube was released internationally in 1980 and became one of the most recognized icons in popular culture. It won the 1980 German Game of the Year special award for Best Puzzle. As of January 2024, around 500 million cubes had been sold worldwide, making it the world's bestselling puzzle game and bestselling toy. The Rubik's Cube was inducted into the US National Toy Hall of Fame in 2014.
The Rubik's Revenge is a 4×4×4 version of the Rubik's Cube. It was released in 1981. Invented by Péter Sebestény, the cube was nearly called the Sebestény Cube until a somewhat last-minute decision changed the puzzle's name to attract fans of the original Rubik's Cube. Unlike the original puzzle, it has no fixed faces: the center faces are free to move to different positions.
The Pyraminx is a regular tetrahedron puzzle in the style of Rubik's Cube. It was made and patented by Uwe Mèffert after the original 3 layered Rubik's Cube by Ernő Rubik, and introduced by Tomy Toys of Japan in 1981.
The Megaminx or Mégaminx is a dodecahedron-shaped puzzle similar to the Rubik's Cube. It has a total of 50 movable pieces to rearrange, compared to the 20 movable pieces of the Rubik's Cube.
The Dogic is an icosahedron-shaped puzzle like the Rubik's Cube. The 5 triangles meeting at its tips may be rotated, or 5 entire faces around the tip may be rotated. It has a total of 80 movable pieces to rearrange, compared to the 20 pieces in the Rubik's Cube.
Uwe Mèffert was a German puzzle designer and inventor. He manufactured and sold mechanical puzzles in the style of Rubik's Cube since the Cube craze of the 1980s. His first design was the Pyraminx – which he had developed before the original Rubik's Cube was invented. He created his own puzzle company and helped bring to market the Megaminx, Skewb, Skewb Diamond and many other puzzles.
The Pyramorphix, also called Pyramorphinx, is a tetrahedral puzzle similar to the Rubik's Cube. It has a total of 8 movable pieces to rearrange, compared to the 20 of the Rubik's Cube. Although it looks like a trivially simple version of the Pyraminx, it is an edge-turning puzzle with the mechanism identical to that of the Pocket Cube.
The Rubik's Cube is the original and best known of the three-dimensional sequential move puzzles. There have been many virtual implementations of this puzzle in software. It is a natural extension to create sequential move puzzles in more than three dimensions. Although no such puzzle could ever be physically constructed, the rules of how they operate are quite rigorously defined mathematically and are analogous to the rules found in three-dimensional geometry. Hence, they can be simulated by software. As with the mechanical sequential move puzzles, there are records for solvers, although not yet the same degree of competitive organisation.
The Pyraminx Crystal is a dodecahedral puzzle similar to the Rubik's Cube and the Megaminx. It is manufactured by Uwe Mèffert and has been sold in his puzzle shop since 2008.
The Void Cube is a 3-D mechanical puzzle similar to a Rubik's Cube, with the notable difference being that the center pieces are missing, which causes the puzzle to resemble a level 1 Menger sponge. The core used on the Rubik's Cube is also absent, creating holes straight through the cube on all three axes. Due to the restricted volume of the puzzle it employs an entirely different structural mechanism from a regular Rubik's Cube, though the possible moves are the same. The Void Cube was invented by Katsuhiko Okamoto. Gentosha Education, in Japan, holds the license to manufacture official Void Cubes. These official designs are also sold under the Rubik's brand, owned by Spin Master Ltd., and workalikes are available from a variety of manufacturers. Speed-solving the Void Cube is common in exhibition but is not an official World Cube Association competition event.
The Rubik's Triamid is a mechanical puzzle invented by Ernő Rubik and released in 1990 by Matchbox. The puzzle was patented in Hungary in 1991. It was re-released in 2017 at the American International Toy Fair by Winning Moves.
The Helicopter Cube is a Rubik's Cube-like puzzle invented by Adam G. Cowan in 2005 and built in 2006. It is also in the shape of a cube. At first glance, the Helicopter Cube may seem like a combination of the 2x2x2 and the Skewb, but it actually cuts differently, and twists around cube edges rather than cube faces. The purpose of the puzzle is to scramble the colors, and then restore them back to their original state of a single color per face.
Alexander's Star is a puzzle similar to the Rubik's Cube, in the shape of a great dodecahedron.
Rubik's Domino is a hand-held puzzle similar to a Rubik's Cube. However, it has one layer removed, making it a 2×3×3 cuboid. The 3×3 faces can be turned 90-degrees as normal, but the 2×3 faces can only be turned 180 degrees. Other cuboids of 2×2×n will solve like multiple dominoes at once. When only using pairs of turns, the puzzle may be solved similarly to a 3x3. The original version had white and black plastic layers. Each 3×3 face displayed a number of dots from 1–9. More recent versions use the traditional six-colour scheme, as seen on most other twisty puzzles. It has 406,425,600 potential positions and any position can be made into a solved position in 19 moves. It was registered as US Patent number 4378116 on 29 March 1983 by Ernő Rubik.
Tony Fisher is a British puzzle designer who specialises in creating custom rotational puzzles. He is acknowledged by cubing enthusiasts as a pioneer in the creation of new puzzle designs and new manufacturing techniques. In 2017 the Guinness Book of World Records acknowledged Fisher as the creator of the world's largest Rubik's cube.
A Tuttminx is a Rubik's Cube-like twisty puzzle, in the shape of a truncated icosahedron. It was invented by Lee Tutt in 2005. It has a total of 150 movable pieces to rearrange, compared to 20 movable pieces of the Rubik's Cube.
The Pyraminx Duo is a tetrahedral twisty puzzle in the style of the Rubik's Cube. It was suggested by Rob Stegmann, invented by Oskar van Deventer, and has now been mass-produced by Meffert's.
The Nine-Colour Cube is a cubic twisty puzzle. It was invented in 2005 by Milan Vodicka and mass-produced by Meffert's seven years later. Mechanically, the puzzle is identical to the Rubik's Cube; however, unlike the 3×3×3 Rubik's Cube, which only has 6 different colours, the Nine-Colour Cube has 9 colours, with the individual pieces having one colour each.
The Gear Cube is a 3-D combination puzzle designed and created by Dutch puzzle maker Oskar van Deventer based on an idea by Bram Cohen. It was initially produced by Shapeways in 2009 and known as "Caution Cube" due to the likelihood of getting one's fingers stuck between the gears while speedcubing. Later, in 2010, it was mass-produced by Meffert's as the "Gear Cube".
The Dino Cube is a cubic twisty puzzle in the style of the Rubik's Cube. It was invented in 1985 by Robert Webb, though it was not mass-produced until ten years later. It has a total of 12 external movable pieces to rearrange, compared to 20 movable pieces on the Rubik's Cube.