Ianbruceite

Last updated
Ianbruceite
General
Category Zinc arsenates
Formula
(repeating unit)
[Zn2(OH)(H2O)(AsO4)](H2O)2
IMA symbol Ibc [1]
Strunz classification 8.DA.50
Dana classification 42 (hydrated phosphates, arsenates and vanadates containing hydroxyl or halogen)
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group P21/b
Identification
ColorSky blue to very pale blue at Tsumeb, white to pale pink in the Caldbeck Fells
Crystal habit Radiating aggregates of lath-like crystals with a distinctive diamond-shaped outline {100}
Cleavage Perfect parallel to (100)
Fracture Crystals are flexible and deform plastically
Mohs scale hardness1
Luster Vitreous
Streak White
Specific gravity Calculated, 3.197
Optical propertiesBiaxial
Refractive index nα = 1.601, nβ = 1.660, nγ = 1.662
Solubility Insoluble in dilute acid
Other characteristicsIt may dehydrate, and it can readily absorb alcohol. Not fluorescent under ultraviolet light
References [2] [3] [4] [5]
High Pike Summit High Pike (Caldbeck) Summit.jpg
High Pike Summit
Leiteite Leiteite-248019.jpg
Leiteite
Kottigite Kottigite-266881.jpg
Köttigite

Ianbruceite is a rare hydrated zinc arsenate with the formula [Zn2(OH)(H2O)(AsO4)](H2O)2; material from the Driggith mine has traces of cobalt. [2] [5] It was first discovered at Tsumeb, approved by the International Mineralogical Association as a new mineral species in 2011, reference IMA2011-49, and named for Ian Bruce, [6] who founded "Crystal Classics" in the early 1990s, and was heavily involved in attempts to reopen the famous Tsumeb mine for specimen mining.
In 2013 new occurrences of ianbruceite were reported from the neighbouring Driggith and Potts Gill mines on High Pike in the Caldbeck Fells, Cumbria, England. Here the mineral is probably a post-mining product. [5] Caldbeck Fells and Tsumeb are the only reported localities for ianbruceite to date (May 2013).

Contents

Structure

There are four formula units per unit cell (Z = 4). [3] Unit cell parameters are the lengths of the sides of the unit cell, a, b and c, and the angle β between the a and c crystal axes. For ianbruceite a = 11.793 Å, b = 9.1138 Å, c = 6.8265 Å, and β = 103.859°. [2] [3] [4] It belongs in the monoclinic, prismatic crystal Class 2/m, with space group P21/c. [2] [3] [4]
Ianbruceite consists of layers with composition [Zn2(OH)(H2O)(AsO4)] alternating with an inter-layer space containing loosely bound water molecules. [5] The arsenic is tetrahedrally coordinated by four oxygen anions.

Appearance

Ianbruceite occurs as aggregates of tiny, radiating, lath-like crystals with a distinctive diamond-shaped outline, up to 0.2 mm across. [5] Material from Tsumeb is blue, ranging from a very pale color to deep blue. [3] Material from the Caldbeck Fells is white to pale pink. [5] The crystals have a vitreous luster and a white streak.

Optical properties

The refractive indices of ianbruceite are similar to that of ordinary window glass, with nα = 1.601, nβ = 1.660 and nγ = 1.662. [3] The refractive index varies with the wavelength (color) of light, so the positions of the optic axes in biaxial crystals, and the angle 2V between them, will change when the color of the incident light is changed. This effect may be expressed in the form r > v, indicating that the angle 2V is greater for red than for violet light, or vice versa. [7] For ianbruceite 2V is greater for violet light than for red light, v > r. [3] The angle 2V has been measured as 18°; it can also be calculated from the values of the refractive indices α, β and γ, giving a value of 20°. [3] The mineral does not fluoresce in ultraviolet light. [2] [3]

Physical properties

Cleavage is perfect parallel to (100). [2] [3] [5] Crystals of ianbruceite are flexible and deform plastically. [3] [5] The mineral is very soft, with Mohs hardness only 1, the same as talc. [2] [3] Measurements of the specific gravity have not been reported, but from the formula and the cell dimensions it has been calculated as 3.197. [2] [3] It is insoluble in dilute acid, which distinguishes it from hydrozincite and aragonite, which are also supergene minerals that form white crusts. [5] The loosely bound water between the layers is easily lost, so the mineral may effloresce. It also readily absorbs alcohol. [5]

Occurrence

The type locality is the Tsumeb Mine, Otjikoto Region, Namibia. [2] Type material is conserved in the Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada, catalogue number M53150. [4]

At localities in the Caldbeck Fells ianbruceite occurs as a late-stage supergene mineral in fractures in partly oxidised sulfide-rich carbonate or quartz-carbonate matrix. The mines of Caldbeck Fells are famous for their supergene minerals. Driggith and Potts Gill Mines worked low temperature lead-zinc-copper veins on the eastern and northern slopes of High Pike. Arsenopyrite is abundant there, and its oxidation in veins that also contain primary lead, zinc and copper sulfides has produced a range of supergene arsenates. [5]

At the Driggith Mine, Caldbeck Fells, Cumbria, on dumps from the 30 fathom level, radiating aggregates of lath-like crystals of ianbruceite have been found in fractures in quartz-dolomite matrix with sphalerite, chalcopyrite and cobalt-bearing köttigite as rounded pink aggregates, or more rarely pale pink to colorless monoclinic blades, as well as irregular black patches of a cobalt-bearing manganese oxide, adamite and an unidentified copper silicate. [5] At the nearby Potts Gill Mine, Caldbeck Fells, Cumbria, on dumps from the Endeavor level, it has been found as minute, pearly, lath-like crystals in fractures in arsenopyrite-rich dolomite. One block of material contained abundant marcasite, galena, sphalerite and minor fine-grained arsenopyrite, in dolomitic matrix. [5]

In Namibia ianbruceite has been found in the zinc pocket at the 44 Level, Tsumeb Mine, as sky blue to very pale blue platy crystals associated with leiteite, köttigite, legrandite and adamite. [5] It occurs as thin platy crystals up to 80 μm long and a few μm thick, which form flattened aggregates up to 0.10 mm across, and ellipsoidal aggregates up to 0.5 mm across, associated with coarse white leiteite, dark blue köttigite, minor legrandite and adamite. [3]

Related Research Articles

<span class="mw-page-title-main">Mimetite</span> Lead arsenate chloride mineral

Mimetite is a lead arsenate chloride mineral (Pb5(AsO4)3Cl) which forms as a secondary mineral in lead deposits, usually by the oxidation of galena and arsenopyrite. The name derives from the Greek Μιμητής mimetes, meaning "imitator" and refers to mimetite's resemblance to the mineral pyromorphite. This resemblance is not coincidental, as mimetite forms a mineral series with pyromorphite (Pb5(PO4)3Cl) and with vanadinite (Pb5(VO4)3Cl). Notable occurrences are Mapimi, Durango, Mexico and Tsumeb, Namibia.

<span class="mw-page-title-main">Alstonite</span> Hydrothermal mineral

Alstonite, also known as bromlite, is a low temperature hydrothermal mineral that is a rare double carbonate of calcium and barium with the formula BaCa(CO
3
)
2
, sometimes with some strontium. Barytocalcite and paralstonite have the same formula but different structures, so these three minerals are said to be trimorphous. Alstonite is triclinic but barytocalcite is monoclinic and paralstonite is trigonal. The species was named Bromlite by Thomas Thomson in 1837 after the Bromley-Hill mine, and alstonite by August Breithaupt of the Freiberg Mining Academy in 1841, after Alston, Cumbria, the base of operations of the mineral dealer from whom the first samples were obtained by Thomson in 1834. Both of these names have been in common use.

<span class="mw-page-title-main">Adamite</span> Zinc arsenate hydroxide mineral

Adamite is a zinc arsenate hydroxide mineral, Zn2AsO4OH. It is a mineral that typically occurs in the oxidized or weathered zone above zinc ore occurrences. Pure adamite is colorless, but usually it possess yellow color due to Fe compounds admixture. Tints of green also occur and are connected with copper substitutions in the mineral structure. Olivenite is a copper arsenate that is isostructural with adamite and there is considerable substitution between zinc and copper resulting in an intermediate called cuproadamite. Zincolivenite is a recently discovered mineral being an intermediate mineral with formula CuZn(AsO4)(OH). Manganese, cobalt, and nickel also substitute in the structure. An analogous zinc phosphate, tarbuttite, is known.

Geigerite is a mineral, a complex hydrous manganese arsenate with formula: Mn5(AsO3OH)2(AsO4)2·10H2O. It forms triclinic pinacoidal, vitreous, colorless to red to brown crystals. It has a Mohs hardness of 3 and a specific gravity of 3.05.

<span class="mw-page-title-main">Legrandite</span> Rare zinc arsenate mineral

Legrandite is a rare zinc arsenate mineral, Zn2(AsO4)(OH)·(H2O).

Jarosewichite is a rare manganese arsenate mineral with formula: Mn2+3Mn3+(AsO4)(OH)6. It was first described in Franklin, New Jersey which is its only reported occurrence. Its chemical composition and structure are similar to chlorophoenicite. This mineral is orthorhombic with 2/m2/m2/m point group. Its crystals are prismatic or barrel-shaped. The color of jarosewichite is dark red to black. It has subvitreous luster of fracture surfaces and reddish-orange streak. This mineral occurs with flinkite, franklinite, andradite and cahnite.

<span class="mw-page-title-main">Duftite</span> Arsenate mineral

Duftite is a relatively common arsenate mineral with the formula CuPb(AsO4)(OH), related to conichalcite. It is green and often forms botryoidal aggregates. It is a member of the adelite-descloizite Group, Conichalcite-Duftite Series. Duftite and conichalcite specimens from Tsumeb are commonly zoned in color and composition. Microprobe analyses and X-ray powder-diffraction studies indicate extensive substitution of Zn for Cu, and Ca for Pb in the duftite structure. This indicates a solid solution among conichalcite, CaCu(AsO4 )(OH), austinite, CaZn(AsO4)(OH) and duftite PbCu(AsO4)(OH), all of them belonging to the adelite group of arsenates. It was named after Mining Councilor G Duft, Director of the Otavi Mine and Railroad Company, Tsumeb, Namibia. The type locality is the Tsumeb Mine, Tsumeb, Otjikoto Region, Namibia.

<span class="mw-page-title-main">Conichalcite</span> Arsenate mineral

Conichalcite, CaCu(AsO4)(OH), is a relatively common arsenate mineral related to duftite (PbCu(AsO4)(OH)). It is green, often botryoidal, and occurs in the oxidation zone of some metal deposits. It occurs with limonite, malachite, beudantite, adamite, cuproadamite, olivenite and smithsonite.

<span class="mw-page-title-main">Lavendulan</span> Uncommon arsenate mineral

Lavendulan is an uncommon arsenate mineral in the lavendulan group. It is known for its characteristic intense electric blue colour. Lavendulan is very similar to Lemanskiite, the analogue trihydrate mineral, to the point of them being considered dimorphs. Lemanskiite is tetragonal, but lavendulan is monoclinic. Lavendulan has the same structure as sampleite, and the two minerals form a series. It is the calcium analogue of zdenĕkite and the arsenate analogue of sampleite.

<span class="mw-page-title-main">Tsumebite</span> Rare phosphate mineral

Tsumebite is a rare phosphate mineral named in 1912 after the locality where it was first found, the Tsumeb mine in Namibia, well known to mineral collectors for the wide range of minerals found there. Tsumebite is a compound phosphate and sulfate of lead and copper, with hydroxyl, formula Pb2Cu(PO4)(SO4)(OH). There is a similar mineral called arsentsumebite, where the phosphate group PO4 is replaced by the arsenate group AsO4, giving the formula Pb2Cu(AsO4)(SO4)(OH). Both minerals are members of the brackebuschite group.

<span class="mw-page-title-main">Keyite</span> Mineral

Keyite is a mineral with the chemical formula Cu2+3Zn4Cd2(AsO4)6 · 2H2O. The name comes from Charles Locke Key, an American mineral dealer who furnished its first specimens. Keyite is monoclinic-prismatic, meaning its crystal form has three unequal axes, two of which have 90° angles between them and one with an angle less than 90°. Keyite belongs to the biaxial optical class, meaning it has more than one axis of anisotropy, in which light travels with zero birefringence, and three indices of refraction, nα = 1.800, nβ, and nγ = 1.870. Being a very rare cadmium copper arsenate, keyite is only found in Tsumeb, Namibia in the Tsumeb mine, a world-famous copper mine known for its abundance of rare and unusual minerals.

<span class="mw-page-title-main">Warikahnite</span> Rare zinc arsenate mineral

Warikahnite is a rare zinc arsenate mineral of the triclinic crystal system with Hermann-Mauguin notation 1, belonging to the space group P1. It occurs in the Tsumeb mine in Namibia on corroded tennantite in the second oxidation zone under hydrothermal conditions in a dolomite-hosted polymetallic ore deposit. It is associated with adamite, stranskiite, koritnigite, claudetite, tsumcorite, and ludlockite. The origin of discovery was in a dolomite ore formation within an oxidized hydrothermal zone, in the E9 pillar, 31st level of the Tsumeb Mine in Namibia, Southwest Africa. It has also been found at Lavrion, Greece and Plaka, Greece as microscopic white needles.

<span class="mw-page-title-main">Tsumcorite</span> Rare hydrated lead arsenate mineral

Tsumcorite is a rare hydrated lead arsenate mineral that was discovered in 1971, and reported by Geier, Kautz and Muller. It was named after the TSUMeb CORporation mine at Tsumeb, in Namibia, in recognition of the Corporation's support for mineralogical investigations of the orebody at its Mineral Research Laboratory.

<span class="mw-page-title-main">Köttigite</span> Rare hydrated zinc arsenate

Köttigite is a rare hydrated zinc arsenate which was discovered in 1849 and named by James Dwight Dana in 1850 in honour of Otto Friedrich Köttig (1824–1892), a German chemist from Schneeberg, Saxony, who made the first chemical analysis of the mineral. It has the formula Zn3(AsO4)2·8H2O and it is a dimorph of metaköttigite, which means that the two minerals have the same formula, but a different structure: köttigite is monoclinic and metaköttigite is triclinic. There are several minerals with similar formulae but with other cations in place of the zinc. Iron forms parasymplesite Fe2+3(AsO4)2·8H2O; cobalt forms the distinctively coloured pinkish purple mineral erythrite Co3(AsO4)2·8H2O and nickel forms annabergite Ni3(AsO4)2·8H2O. Köttigite forms series with all three of these minerals and they are all members of the vivianite group.

<span class="mw-page-title-main">Carminite</span> Anhydrous arsenate mineral containing hydroxyl

Carminite (PbFe3+2(AsO4)2(OH)2) is an anhydrous arsenate mineral containing hydroxyl. It is a rare secondary mineral that is structurally related to palermoite (Li2SrAl4(PO4)4(OH)4). Sewardite (CaFe3+2(AsO4)2(OH)2) is an analogue of carminite, with calcium in sewardite in place of the lead in carminite. Mawbyite is a dimorph (same formula, different structure) of carminite; mawbyite is monoclinic and carminite is orthorhombic. It has a molar mass of 639.87 g. It was discovered in 1850 and named for the characteristic carmine colour.

<span class="mw-page-title-main">Serpierite</span> Rare sky-blue coloured hydrated sulfate mineral

Serpierite (Ca(Cu,Zn)4(SO4)2(OH)6·3H2O) is a rare, sky-blue coloured hydrated sulfate mineral, often found as a post-mining product. It is a member of the devilline group, which has members aldridgeite (Cd,Ca)(Cu,Zn)4(SO4)2(OH)6·3H2O, campigliaite Cu4Mn2+(SO4)2(OH)6·4H2O, devilline CaCu4(SO4)2(OH)6·3H2O, kobyashevite Cu5(SO4)2(OH)6·4H2O, lautenthalite PbCu4(SO4)2(OH)6·3H2O and an unnamed dimorph of devilline. It is the calcium analogue of aldridgeite and it is dimorphous with orthoserpierite CaCu4(SO4)2(OH)6·3H2O.

<span class="mw-page-title-main">Mottramite</span> Orthorhombic anhydrous vanadate hydroxide mineral

Mottramite is an orthorhombic anhydrous vanadate hydroxide mineral, PbCu(VO4)(OH), at the copper end of the descloizite subgroup. It was formerly called cuprodescloizite or psittacinite (this mineral characterized in 1868 by Frederick Augustus Genth). Duhamelite is a calcium- and bismuth-bearing variety of mottramite, typically with acicular habit.

<span class="mw-page-title-main">Talmessite</span> Hydrated calcium magnesium arsenate

Talmessite is a hydrated calcium magnesium arsenate, often with significant amounts of cobalt or nickel. It was named in 1960 for the type locality, the Talmessi mine, Anarak district, Iran. It forms a series with β-Roselite, where cobalt replaces some of the magnesium, and with gaitite, where zinc replaces the magnesium. All these minerals are members of the fairfieldite group. Talmessite is dimorphic with wendwilsonite.

Bettertonite is a mineral of the arsenate category, named after John Betterton. He is a museum geologist and mineralogist at Haslemere Educational Museum in Surrey, England. Bettertonite is a white arsenate mineral with a formula of [Al6(AsO4)3(OH)9(H2O)5]・11H2O. Bettertonite is in the monoclinic system and has a heteropolyhedral layered structure type. It is a natural forming polyoxometalate. Bettertonite forms in clusters of radiating rectangular laths. Laths are thin and usually < 20 μm laterally. Laths are flat on {010}. Bettertonite is similar to penberthycroftyite and it transforms into penberthycroftyite at low temperatures (67–97 °C).

<span class="mw-page-title-main">Arsendescloizite</span> Lead-zinc mineral

Arsendescloizite is a lead-zinc mineral, approved by the IMA in 1982. It is an arsenate analog of descloizite. Its first description was published in 1982.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 5 6 7 8 9 "Ianbruceite".
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Cooper, Abdu, Ball, Hawthorne, Back, Tait, Schlüter, Malcherek, Pohl and Gebhard (2012): Ianbruceite, ideally [Zn2(OH)(H2O)(AsO4)](H2O)2, a new arsenate mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: description and crystal structure. Mineralogical Magazine 76:1119-1131
  4. 1 2 3 4 Cooper, Abdu, Ball, Back, Hawthorne and Tait (2011): Ianbruceite, IMA 2011-049 CNMNC Newsletter No. 10, October 2011, page 2560
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Neall, Leppington, Green and Rumsey (2013) The first British Occurrences of Ianbruceite from the Caldbeck Fells, Cumbria. UK Journal of Mines & Minerals 34:8-12
  6. http://crystalclassics.co.uk/page.php?id=3>
  7. Klein and Hurlbut (1993) Manual of Mineralogy 21st Edition. Wiley