Jenny Wagner

Last updated
Jenny Wagner
Jenny Wagner.jpg
Jenny Wagner, 2008
Born1984
Alma mater Heidelberg University
Known for Observational cosmology, Strong gravitational lensing
AwardsPreis für mutige Wissenschaft
Scientific career
Fields Physics
Institutions CERN, German Cancer Research Center, Heidelberg University, Bahamas Advanced Study Institute and Conferences (BASIC)
Thesis Quality control for peptide chip array production
Doctoral advisor Volker Lindenstruth

Jenny Wagner (born 1984) is a German physicist, cosmologist, and book author. [1]

Contents

In her research, she aims at identifying the impact of models and more general assumptions on the interpretation of data within a given theoretical framework [2] , and thereby follows the ideas of ideal observational cosmology [3] , as pursued by George Ellis and collaborators. Her research in cosmology specialises in strong gravitational lensing, the description and evolution of cosmic structures, and the reconstruction of the cosmic distance ladder. [1] Since 2019, she has been engaged in disseminating the concepts and results of astrophysical and cosmological research as part of the team of the German YouTube channel "Urknall, Weltall und das Leben" run by Joseph M. Gaßner. [4]

In 2020, she was awarded the "Preis für mutige Wissenschaft" of the Baden-Württemberg Ministry of Science, Research and Art for proving to take high risks from the beginning of her the career onwards while working between different research fields – from her start in particle physics to her PhD in biophysics and to her work in cosmology. [5]

Besides the mathematical and physical aspects of cosmology, she is interested in its philosophical foundations. [6] She is also the editor of the 7th German edition of "Physics for Scientists and Engineers" originally written by Paul A. Tipler and Gene Mosca, and co-editor of the 8th German edition, published by Springer. [7]

Education

From 2003 to 2008, she studied physics, mathematics, and computer science at Heidelberg University, graduating with a Diplom in physics. Her thesis "Data compression for the ALICE detector at CERN" was written in the group led by Professor Volker Lindenstruth in Heidelberg and at CERN. [1] [8] From 2009 to 2011, she studied digital image processing, pattern recognition, and machine learning at the Heidelberg Collaboratory for Image Processing and wrote her PhD thesis in an interdisciplinary project between the Kirchhoff-Institute for Physics and the German Cancer Research Center on "Quality control for peptide chip array production" under the supervision of Volker Lindenstruth with Bernd Jähne and Michael Hausmann as thesis referees. [9] [10]

Work

From 2014 to 2021 Jenny Wagner held two grants from the German Research Foundation to pursue her own research projects about strong gravitational lensing. [11] Among others, the results included the mathematical derivation of the general class of invariance transformations in the strong gravitational lensing formalism that leave all observable data invariant. [12] [13] These derivations make it possible to separate the information that is directly contained in the data, i.e. the surface brightness profiles of extended multiple images, from the additional assumptions in terms of a specific mass density model for the gravitational lens that causes the observed light deflection. The approach thus yields an unprecedented understanding of the impact that different mass density profiles used as strong gravitational lens models have on the interpretation of the data. In particular, it explains the discrepancies found in the reconstruction of the total mass distribution in galaxies and galaxy clusters when different mass density profiles are used as lens models. [14] Proof-of-principle was shown for the galaxy cluster CL0024+17 and the method was also applied to a triple-image configuration in the galaxy cluster J223013.1-080853.1 to infer properties of this strong gravitational lens that no model-based method could achieve due to the sparsity of available data. [15] [16]

In an interdisciplinary collaboration with condensed matter physicists, she also investigated whether Minkowski Tensors are better descriptors of surface brightness profiles for (gravitationally distorted) galaxy surface brightness profiles. [17]

Jenny Wagner succeeded in transferring the same approach of separating data-based evidence from additional model assumptions to the reconstruction of the cosmic distance ladder with Type Ia supernovae [18] , such that the cosmic expansion function can be reconstructed by standardisable objects without the need to make any assumption about the value of the Hubble constant. As the strong gravitational lensing formalism requires cosmic distances to the lens and the background source to be known, the data-based reconstruction of the cosmic distance ladder as set up by this approach also contributes to free the interpretation of strong gravitational lensing phenomena from assuming a specific cosmological model in the class of homogeneous and isotropic cosmologies.

As the total mass distribution in strong gravitational lenses can usually only be constrained by sparse observational data, lens models still play a major role in the mass reconstructions. To overcome the problem that most mass density models used as strong gravitational lens models are inferred as heuristic fitting functions to cosmic structure simulations, Jenny Wagner derived the class of (broken) power law mass density profiles, like the famous Navarro-Frenk-White profile, from fundamental principles. [19] [20] Her approach does not rely on conventional statistical mechanics. This can be considered an advantage over standard derivations because the ergodic hypothesis is violated for gravity and its scale-freeness impedes a natural way to set up and coarse grain a phase space to establish an entropy.

The approach is deemed a promising step towards a deeper understanding of structures formed by gravitational interaction as it received an honourable mention in the Gravity Research Foundation Essay Contest 2020. [21]

Most recently, she put forward the idea that the tension in the Hubble constant can be cast as a fitting problem in cosmology. Then, the tension is resolved by acknowledging that the independence of the probes at early and late cosmic times can cause a lack of synchronisation between the fitted cosmological models. At early cosmic times, the all-sky observables are easy to be fitted to a homogeneous and isotropic background cosmology and perturbations on top. Contrary to that, it is hard to partition the local observables in the late universe into a contribution from the background cosmology and one for the perturbation level effects. Furthermore, she argues that the data are not equally sensitive to all parameters of the cosmological concordance model in the two fitting processes. Taking the lack of synchronisation and the varying sensitivity of the data to the cosmological model together, observational evidence can be found to support this explanation of the Hubble tension. [22]

As part of the German YouTube channel, Jenny Wagner has recorded several video talks about her research results and current issues in cosmology like possible violations of the cosmological principle. [23]

Together with Stephen Appleby, Eoin Ó Colgáin, and Shahin Sheikh-Jabbari, she also established a web blog called "Cosmo of '69 -- observational cosmology out of the FLRW box" to disseminate and promote observational evidence questioning the validity of the current concordance cosmological model and alternatives to this established standard. [24]

Publications (selected)

See also

Related Research Articles

<span class="mw-page-title-main">Big Bang</span> Physical theory

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. The notion of an expanding universe was first scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations.

<span class="mw-page-title-main">Black hole</span> Object that has a no-return boundary

A black hole is a region of spacetime where gravity is so strong that nothing, not even light and other electromagnetic waves, is capable of possessing enough energy to escape it. Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. A black hole has a great effect on the fate and circumstances of an object crossing it, but it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

<span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

<span class="mw-page-title-main">Cosmic microwave background</span> Trace radiation from the early universe

The cosmic microwave background is microwave radiation that fills all space in the observable universe. It is sometimes called relic radiation. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.

<span class="mw-page-title-main">Dark matter</span> Concept in cosmology

In astronomy, dark matter is a hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be seen. Such effects occur in the context of formation and evolution of galaxies, gravitational lensing, the observable universe's current structure, mass position in galactic collisions, the motion of galaxies within galaxy clusters, and cosmic microwave background anisotropies.

<span class="mw-page-title-main">Galaxy groups and clusters</span> Largest known gravitationally bound object in universe; aggregation of galaxies

Galaxy groups and clusters are the largest known gravitationally bound objects to have arisen thus far in the process of cosmic structure formation. They form the densest part of the large-scale structure of the Universe. In models for the gravitational formation of structure with cold dark matter, the smallest structures collapse first and eventually build the largest structures, clusters of galaxies. Clusters are then formed relatively recently between 10 billion years ago and now. Groups and clusters may contain ten to thousands of individual galaxies. The clusters themselves are often associated with larger, non-gravitationally bound, groups called superclusters.

<span class="mw-page-title-main">Accelerating expansion of the universe</span> Cosmological phenomenon

Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are farther away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the farther away that an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.

<span class="mw-page-title-main">Gravitational lens</span> Light bending by mass between source and observer

A gravitational lens is matter, such as a cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's general theory of relativity. If light is treated as corpuscles travelling at the speed of light, Newtonian physics also predicts the bending of light, but only half of that predicted by general relativity.

<span class="mw-page-title-main">Non-standard cosmology</span> Models of the universe which deviate from then-current scientific consensus

A non-standard cosmology is any physical cosmological model of the universe that was, or still is, proposed as an alternative to the then-current standard model of cosmology. The term non-standard is applied to any theory that does not conform to the scientific consensus. Because the term depends on the prevailing consensus, the meaning of the term changes over time. For example, hot dark matter would not have been considered non-standard in 1990, but would have been in 2010. Conversely, a non-zero cosmological constant resulting in an accelerating universe would have been considered non-standard in 1990, but is part of the standard cosmology in 2010.

<span class="mw-page-title-main">Observable universe</span> All of space observable from the Earth at the present

The observable universe is a ball-shaped region of the universe consisting of all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Initially, it was estimated that there may be 2 trillion galaxies in the observable universe. That number was reduced in 2021 to several hundred billion based on data from New Horizons. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.

Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simply connected. Their existence was first contemplated by the theoretical physicist Tom Kibble in the 1970s.

<span class="mw-page-title-main">Lambda-CDM model</span> Model of Big Bang cosmology

The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:

  1. a cosmological constant, denoted by lambda (Λ), associated with dark energy
  2. the postulated cold dark matter, denoted by CDM
  3. ordinary matter
<span class="mw-page-title-main">Redshift-space distortions</span>

Redshift-space distortions are an effect in observational cosmology where the spatial distribution of galaxies appears squashed and distorted when their positions are plotted as a function of their redshift rather than as a function of their distance. The effect is due to the peculiar velocities of the galaxies causing a Doppler shift in addition to the redshift caused by the cosmological expansion.

<span class="mw-page-title-main">Expansion of the universe</span> Increase in distance between parts of the universe over time

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.

<span class="mw-page-title-main">Gravitational-wave astronomy</span> Branch of astronomy using gravitational waves

Gravitational-wave astronomy is a subfield of astronomy concerned with the detection and study of gravitational waves emitted by astrophysical sources.

<span class="mw-page-title-main">Weak gravitational lensing</span>

While the presence of any mass bends the path of light passing near it, this effect rarely produces the giant arcs and multiple images associated with strong gravitational lensing. Most lines of sight in the universe are thoroughly in the weak lensing regime, in which the deflection is impossible to detect in a single background source. However, even in these cases, the presence of the foreground mass can be detected, by way of a systematic alignment of background sources around the lensing mass. Weak gravitational lensing is thus an intrinsically statistical measurement, but it provides a way to measure the masses of astronomical objects without requiring assumptions about their composition or dynamical state.

<span class="mw-page-title-main">Strong gravitational lensing</span>

Strong gravitational lensing is a gravitational lensing effect that is strong enough to produce multiple images, arcs, or Einstein rings. Generally, for strong lensing to occur, the projected lens mass density must be greater than the critical density, that is . For point-like background sources, there will be multiple images; for extended background emissions, there can be arcs or rings. Topologically, multiple image production is governed by the odd number theorem.

<span class="mw-page-title-main">Dark energy</span> Energy driving the accelerated expansion of the universe

In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. Assuming that the lambda-CDM model of cosmology is correct, dark energy dominates the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and ordinary (baryonic) matter contribute 26% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible. Dark energy's density is very low: 7×10−30 g/cm3, much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.

Modified Newtonian dynamics (MOND) is a theory that proposes a modification of Newton's second law to account for observed properties of galaxies. Its primary motivation is to explain galaxy rotation curves without invoking dark matter, and is one of the most well-known theories of this class. However, it has not gained widespread acceptance, with the majority of astrophysicists supporting the Lambda-CDM model as providing the better fit to observations.

<span class="mw-page-title-main">Primordial black hole</span> Hypothetical black hole formed soon after the Big Bang

In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the supernova compression typically needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.

References

  1. 1 2 3 From ideal to real observational cosmology, thegravitygrinch.blogspot, retrieved 2022-11-22
  2. The Cosmological Cheshire Cat, Foundational Questions Institute , retrieved 2022-11-22
  3. Ellis, G.F.R.; Nel, S.D.; Maartens, R.; Stoeger, W.R.; Whitman, A.P. (1985), "Ideal observational cosmology", Physics Reports, 124 (5–6), Elsevier: 315–417, Bibcode:1985PhR...124..315E, doi:10.1016/0370-1573(85)90030-4 , retrieved 2022-11-22
  4. Urknall, Weltall und das Leben, Josef M. Gaßner, retrieved 2022-11-22
  5. Preis für mutige Wissenschaft 2020, Baden-Württemberg, 21 December 2020, retrieved 2022-11-22
  6. Philosophy of science, thegravitygrinch.blogspot, retrieved 2022-11-22
  7. Wagner, Jenny, Springer Science+Business Media , retrieved 2022-11-22
  8. Lossless Data Compression for ALICE HLT (PDF), CERN , retrieved 2022-11-22
  9. Quality control for peptide chip array production (dissertation), Heidelberg University , retrieved 2022-11-22
  10. Wagner, Jenny; Lffler, Felix; Frtsch, Tobias; Schirwitz, Christopher; Fernandez, Simon; Hinkers, Heinz; F, Heinrich; Painke, Florian; Knig, Kai; Bischoff, Ralf; Nesterov-Mller, Alexander; Breitling, Frank; Hausmann, Michael; Lindenstruth, Volker (2012), "Image Processing Quality Analysis for Particle Based Peptide Array Production on a Microchip", Advanced Image Acquisition, Processing Techniques and Applications I, IntechOpen, doi:10.5772/37072, ISBN   978-953-51-0342-4 , retrieved 2022-11-22
  11. Model-independent characterisation and model selection of gravitational lenses, German Research Foundation , retrieved 2022-11-22
  12. Wagner, Jenny (2018), "Generalised model-independent characterisation of strong gravitational lenses", Astronomy & Astrophysics , 620: A86, arXiv: 1809.03505 , doi: 10.1051/0004-6361/201834218
  13. Wagner, Jenny (2019), "Generalised model-independent characterisation of strong gravitational lenses – VI. The origin of the formalism intrinsic degeneracies and their influence on H0", Monthly Notices of the Royal Astronomical Society , 487 (4): 4492–4503, arXiv: 1904.07239 , doi: 10.1093/mnras/stz1587
  14. Wagner, Jenny; Liesenborgs, Jori; Tessore, Nicolas (2018), "Model-independent and model-based local lensing properties of CL0024+1654 from multiply imaged galaxies", Astronomy & Astrophysics , 612: A17, arXiv: 1709.03531 , Bibcode:2018A&A...612A..17W, doi:10.1051/0004-6361/201731932, S2CID   55327665 , retrieved 2022-11-22
  15. Galaxy Cluster's Gravity Produces Mirror Images of Distant Galaxy Behind It, Space Telescope Science Institute, retrieved 2022-11-22
  16. Griffiths, Richard E.; Rudisel, Mitchell; Wagner, Jenny; Hamilton, Timothy; Huang, Po-Chieh; Villforth, Carolin (2021), "Hamilton's Object – a clumpy galaxy straddling the gravitational caustic of a galaxy cluster: constraints on dark matter clumping", Monthly Notices of the Royal Astronomical Society , 506 (2): 1595–1608, arXiv: 2105.04562 , doi: 10.1093/mnras/stab1375
  17. Astronomical data analysis, morphometry.org, retrieved 2022-11-22
  18. Wagner, Jenny; Meyer, Sven (2019), "Generalized model-independent characterization of strong gravitational lenses V: reconstructing the lensing distance ratio by supernovae for a general Friedmann universe", Monthly Notices of the Royal Astronomical Society , 490 (2): 1913–1927, arXiv: 1812.04002 , doi: 10.1093/mnras/stz2717
  19. Wagner, Jenny (2020), "Cosmic structures from a mathematical perspective 1: dark matter halo mass density profiles", General Relativity and Gravitation, 52 (6), Springer Science+Business Media: 61, arXiv: 2002.00960 , Bibcode:2020GReGr..52...61W, doi:10.1007/s10714-020-02715-w, S2CID   211020964 , retrieved 2022-11-22
  20. Wagner, Jenny (2020), "Self-gravitating dark matter gets in shape", International Journal of Modern Physics D, 29 (14), arXiv: 2005.08975 , Bibcode:2020IJMPD..2943017W, doi:10.1142/S0218271820430178, S2CID   218685023
  21. "Abstracts of Award Winning and Honorable Mention Essays for 2020" (PDF), International Journal of Modern Physics D, 29 (14), Gravity Research Foundation, 2020, Bibcode:2020IJMPD..2902004., doi:10.1142/S0218271820020046, S2CID   241698913 , retrieved 2022-11-22
  22. Wagner, Jenny (2023), "Solving the Hubble tension à la Ellis & Stoeger 1987", Proceedings of Corfu Summer Institute 2022 "School and Workshops on Elementary Particle Physics and Gravity" — PoS(CORFU2022), p. 267, arXiv: 2203.11219 , doi: 10.22323/1.436.0267
  23. Urknall, Weltall, Leben, Gravitationslinseneffekt, YouTube , retrieved 2022-11-22
  24. Cosmo of '69, observational cosmology out of the FLRW box, About, Cosmo of '69, 6 January 2022, retrieved 2022-11-22