KIDS J232940-34092

Last updated
KIDS J232940-34092
Observation data
Constellation Pisces
Right ascension 352.417753
Declination 34.156375
Distance 5.2 billion light years
Characteristics
Type Post-Blue Nugget

KIDS J232940-34092 is a massive quadruple lens compact post-blue nugget type galaxy that is located at Redshift 0.38, meaning it is located about 5.2 billion light years from Earth. [1] It has a Einstein cross effect, a effect where light from a distant galaxy comes across a region of spacetime that is warped (gravitational lensed) by a massive galaxy in the lights path. [2] [3] It was discovered along with KIDS J122456+005048, another blue nugget galaxy with a Einstein cross. [4]

The galaxy has a evolved stellar population of very little stellar formation. This was discovered due to the galaxy's prominent absorption features. [5]

Reference

  1. Kohler, Susanna (2020-12-01). "Nugget Galaxies Cross in the Sky". AAS Nova Highlights: 7305. Bibcode:2020nova.pres.7305K.
  2. Hensley, Kerry (2023-08-21). "Featured Image: A New Einstein Cross". AAS Nova. Retrieved 2023-10-29.
  3. Napolitano, N. R.; Li, R.; Spiniello, C.; Tortora, C.; Sergeyev, A.; D’Ago, G.; Guo, X.; Xie, L.; Radovich, M.; Roy, N.; Koopmans, L. V. E.; Kuijken, K.; Bilicki, M.; Erben, T.; Getman, F. (2020-12-03). "Discovery of Two Einstein Crosses from Massive Post-blue Nugget Galaxies at z > 1 in KiDS". The Astrophysical Journal. 904 (2): L31. arXiv: 2011.09150 . Bibcode:2020ApJ...904L..31N. doi: 10.3847/2041-8213/abc95b . ISSN   2041-8213.
  4. Napolitano, N. R.; Li, R.; Spiniello, C.; Tortora, C.; Sergeyev, A.; D'Ago, G.; Guo, X.; Xie, L.; Radovich, M.; Roy, N.; Koopmans, L. V. E.; Kuijken, K.; Bilicki, M.; Erben, T.; Getman, F. (2020-12-03). "Discovery of two Einstein crosses from massive post--blue nugget galaxies at z>1 in KiDS". Astrophysical Journal Letters. 904 (2): L31. arXiv: 2011.09150 . Bibcode:2020ApJ...904L..31N. doi: 10.3847/2041-8213/abc95b . ISSN   2041-8205.
  5. Napolitano, N. R.; Li, R.; Spiniello, C.; Tortora, C.; Sergeyev, A.; D'Ago, G.; Guo, X.; Xie, L.; Radovich, M.; Roy, N.; Koopmans, L. V. E.; Kuijken, K.; Bilicki, M.; Erben, T.; Getman, F. (2020-12-03). "Discovery of two Einstein crosses from massive post--blue nugget galaxies at z>1 in KiDS". The Astrophysical Journal. 904 (2): L31. arXiv: 2011.09150 . Bibcode:2020ApJ...904L..31N. doi: 10.3847/2041-8213/abc95b . ISSN   2041-8213.


Related Research Articles

The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass. The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916.

<span class="mw-page-title-main">Elliptical galaxy</span> Spherical or ovoid mass of stars

An elliptical galaxy is a type of galaxy with an approximately ellipsoidal shape and a smooth, nearly featureless image. They are one of the four main classes of galaxy described by Edwin Hubble in his Hubble sequence and 1936 work The Realm of the Nebulae, along with spiral and lenticular galaxies. Elliptical (E) galaxies are, together with lenticular galaxies (S0) with their large-scale disks, and ES galaxies with their intermediate scale disks, a subset of the "early-type" galaxy population.

<span class="mw-page-title-main">Intermediate-mass black hole</span> Class of black holes with a mass range of 100 to 100000 solar masses

An intermediate-mass black hole (IMBH) is a class of black hole with mass in the range 102–105 solar masses: significantly more than stellar black holes but less than the 105–109 solar mass supermassive black holes. Several IMBH candidate objects have been discovered in the Milky Way galaxy and others nearby, based on indirect gas cloud velocity and accretion disk spectra observations of various evidentiary strength.

<span class="mw-page-title-main">Rogue planet</span> Planetary object without a planetary system

A rogueplanet, also termed a free-floating planet (FFP) or an isolated planetary-mass object (iPMO), is an interstellar object of planetary mass which is not gravitationally bound to any star or brown dwarf.

<span class="mw-page-title-main">Sagittarius A*</span> Supermassive black hole at the center of the Milky Way

Sagittarius A*, abbreviated Sgr A*, is the supermassive black hole at the Galactic Center of the Milky Way. Viewed from Earth, it is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south of the ecliptic, visually close to the Butterfly Cluster (M6) and Lambda Scorpii.

<span class="mw-page-title-main">Einstein@Home</span> BOINC volunteer computing project that analyzes data from LIGO to detect gravitational waves

Einstein@Home is a volunteer computing project that searches for signals from spinning neutron stars in data from gravitational-wave detectors, from large radio telescopes, and from a gamma-ray telescope. Neutron stars are detected by their pulsed radio and gamma-ray emission as radio and/or gamma-ray pulsars. They also might be observable as continuous gravitational wave sources if they are rapidly spinning and non-axisymmetrically deformed. The project was officially launched on 19 February 2005 as part of the American Physical Society's contribution to the World Year of Physics 2005 event.

The gravitational wave background is a random background of gravitational waves permeating the Universe, which is detectable by gravitational-wave experiments, like pulsar timing arrays. The signal may be intrinsically random, like from stochastic processes in the early Universe, or may be produced by an incoherent superposition of a large number of weak independent unresolved gravitational-wave sources, like supermassive black-hole binaries. Detecting the gravitational wave background can provide information that is inaccessible by any other means about astrophysical source population, like hypothetical ancient supermassive black-hole binaries, and early Universe processes, like hypothetical primordial inflation and cosmic strings.

<span class="mw-page-title-main">OJ 287</span> BL Lac object in the constellation Cancer

OJ 287 is a BL Lac object 5 billion light-years from Earth that has produced quasi-periodic optical outbursts going back approximately 120 years, as first apparent on photographic plates from 1891. Seen on photographic plates since at least 1887, it was first detected at radio wavelengths during the course of the Ohio Sky Survey. It is a supermassive black hole binary (SMBHB). The intrinsic brightness of the flashes corresponds to over a trillion times the Sun's luminosity, greater than the entire Milky Way galaxy's light output.

1E1740.7-2942, or the Great Annihilator, is a Milky Way microquasar, located near the Galactic Center on the sky. It likely consists of a black hole and a companion star. It is one of the brightest X-ray sources in the region around the Galactic Center.

<span class="mw-page-title-main">RX J1131-1231</span> Supermassive-black-hole-containing quasar in the constellation Crater

RX J1131-1231 is a distant, supermassive-black-hole-containing quasar located about 6 billion light years from Earth in the constellation Crater.

A tidal disruption event (TDE) is an astronomical phenomenon that occurs when a star approaches sufficiently close to a supermassive black hole (SMBH) to be pulled apart by the black hole's tidal force, experiencing spaghettification. A portion of the star's mass can be captured into an accretion disk around the black hole, resulting in a temporary flare of electromagnetic radiation as matter in the disk is consumed by the black hole. According to early papers, tidal disruption events should be an inevitable consequence of massive black holes' activity hidden in galaxy nuclei, whereas later theorists concluded that the resulting explosion or flare of radiation from the accretion of the stellar debris could be a unique signpost for the presence of a dormant black hole in the center of a normal galaxy. Sometimes a star can survive the encounter with an SMBH, and a remnant is formed. These events are termed partial TDEs.

<span class="mw-page-title-main">SN Refsdal</span> Supernova that has been lensed

SN Refsdal is the first detected multiply-lensed supernova, visible within the field of the galaxy cluster MACS J1149+2223. It was named after Norwegian astrophysicist Sjur Refsdal, who, in 1964, first proposed using time-delayed images from a lensed supernova to study the expansion of the universe. The observations were made using the Hubble Space Telescope.

<span class="mw-page-title-main">NGC 4993</span> Galaxy in the constellation of Hydra

NGC 4993 is a lenticular galaxy located about 140 million light-years away in the constellation Hydra. It was discovered on 26 March 1789 by William Herschel and is a member of the NGC 4993 Group.

<span class="mw-page-title-main">Fast blue optical transient</span> Astronomical observation

In astronomy, a fast blue optical transient (FBOT), or more specifically, luminous fast blue optical transient (LFBOT), is an explosive transient event similar to supernovae and gamma-ray bursts with high optical luminosity, rapid evolution, and predominantly blue emission. The origins of such explosions are currently unclear, with events occurring at not more than 0.1% of the typical core-collapse supernova rate. This class of transients initially emerged from large sky surveys at cosmological distances, yet in recent years a small number have been discovered in the local Universe, most notably AT 2018cow.

<span class="mw-page-title-main">WD 1856+534</span> White dwarf located in the constellation Draco

WD 1856+534 is a white dwarf located in the constellation of Draco. At a distance of about 25 parsecs (80 ly) from Earth, it is the outer component of a visual triple star system consisting of an inner pair of red dwarf stars. The white dwarf displays a featureless absorption spectrum, lacking strong optical absorption or emission features in its atmosphere. It has an effective temperature of 4,700 K, corresponding to an age of approximately 5.8 billion years. WD 1856+534 is approximately half as massive as the Sun, while its radius is much smaller, being 40% larger than Earth.

<span class="mw-page-title-main">NeVe 1</span> Galaxy in the constellation Ophiuchus

NeVe 1 is a supergiant elliptical galaxy, which is the central, dominant member and brightest cluster galaxy (BCG) of the Ophiuchus Cluster. It lies at a distance of about 411 million light-years away from Earth and is located behind the Zone of Avoidance region in the sky. It is the host galaxy of the Ophiuchus Supercluster eruption, the most energetic astronomical event known.

<span class="mw-page-title-main">AT 2021lwx</span> Astronomical Events

AT 2021lwx (also known as ZTF20abrbeie or "Scary Barbie") is the most energetic non-quasar optical transient astronomical event ever observed, with a peak luminosity of 7 × 1045 erg per second (erg s−1) and a total radiated energy of more than 1.5 × 1053 erg over three years. Only GRB 221009A was more energetic, while also being far brighter. It was first identified in imagery obtained on 13 April 2021 by the Zwicky Transient Facility (ZTF) astronomical survey and is believed to be due to the accretion of matter into a super massive black hole (SMBH) heavier than one hundred million solar masses (M). It has a redshift of z = 0.9945, which would place it at a distance of about eight billion light-years from earth, and is located in the constellation Vulpecula. No host galaxy has been detected.

<span class="mw-page-title-main">Blue Nugget</span> Distant galaxy that only existed in the early universe

Blue Nugget galaxies are a type of distant galaxy that only existed in the early universe. Blue nugget galaxies are small but high mass galaxies undergoing mass bursts of star formation, making many large, bright blue stars. As their stellar population evolves and ages, blue nugget galaxies transition into red nugget galaxies.