WASP-76

Last updated
WASP-76
Observation data
Epoch J2000       Equinox
Constellation Pisces
Right ascension 01h 46m 31.8577s [1]
Declination 02° 42 02.0332 [1]
Apparent magnitude  (V)9.52 [2]
Characteristics
Evolutionary stage main sequence star
Spectral type F7V
B−V color index 0.61
J−H color index 0.21
J−K color index 0.3
Astrometry
Radial velocity (Rv)−1.152±0.0033 [3]  km/s
Proper motion (μ)RA: 45.398 [1]   mas/yr
Dec.: -40.819 [1]   mas/yr
Parallax (π)5.1204 ± 0.1579  mas [1]
Distance 640 ± 20  ly
(195 ± 6  pc)
Details [4]
Mass 1.46±0.07  M
Radius 1.73±0.04  R
Surface gravity (log g)4.4±0.1 [5]   cgs
Temperature 6250±100  K
Metallicity [Fe/H]0.23±0.1  dex
Rotational velocity (v sin i)3.3±0.6 [5]  km/s
Age 5.3+6.1
2.9
[5]   Gyr
Other designations
WASP-76, 2MASS J01463185+0242019, Gaia DR2 2512326349403275520
Database references
SIMBAD data

WASP-76, also known as BD+01 316, is a yellow-white main sequence star in the constellation of Pisces. Since 2014, it has had one suspected stellar companion at a projected separation of 85 astronomical units. [6] [7]

Contents

Planetary system

Size comparison of WASP-76 b, Jupiter and Saturn WASP-76 b size comparison.png
Size comparison of WASP-76 b, Jupiter and Saturn

The "hot Jupiter" class planet WASP-76b was discovered around WASP-76 in 2013.

The WASP-76 planetary system [8]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.92±0.03  MJ 0.0331.809886±0.000001088.0±1.6° 1.83±0.06  RJ

Related Research Articles

WASP-11/HAT-P-10 is a binary star. It is a primary main-sequence orange dwarf star. Secondary is M-dwarf with a projected separation of 42 AU. The system is located about 424 light-years away in the constellation Aries.

WASP-5 is a magnitude 12 G-type main-sequence star located about 1,020 light-years away in the Phoenix constellation. The star is likely older than the Sun, slightly enriched in heavy elements and is rotating rapidly, being spun up by the tides raised by the giant planet on a close orbit.

HD 190984, also known as HIP 99496, is a star located in the southern circumpolar constellation Pavo, the peacock. It has an apparent magnitude of 8.76, making it readily visible in small telescopes, but not to the naked eye. Based on parallax measurements from the Gaia spacecraft, the object is estimated to be 486 light years away from the Solar System. It appears to be receding with a heliocentric radial velocity of 20.3 km/s.

WASP-34, also named Amansinaya, is a sunlike star of spectral type G5V that has 1.01 ± 0.07 times the mass and 0.93 ± 0.12 times the diameter of the Sun. It rotates on its axis every 34 ± 15 days, indicating it is around 6.7 billion years old.

WASP-49 is a yellow dwarf main-sequence star. Its surface temperature is 5600 K. WASP-49 is depleted of heavy elements relative to Sun, with metallicity Fe/H index of -0.23, meaning it has an abundance of iron 59% of the Sun's level.

<span class="mw-page-title-main">WASP-21</span> Star in the constellation Pegasus

WASP-21 is a G-type star that is reaching the end of its main sequence lifetime approximately 850 light years from Earth in the constellation of Pegasus. The star is relatively metal-poor, having 40% of heavy elements compared to the Sun. Kinematically, WASP-21 belongs to the thick disk of the Milky Way. It has an exoplanet named WASP-21b.

WASP-32 is a yellow main-sequence star in the constellation of Pisces. The star was given the formal name Parumleo in January 2020, Latin for small lion and referencing the national animal of Singapore.

WASP-26 is a yellow main sequence star in the constellation of Cetus.

WASP-25 is a yellow main sequence star in the constellation of Hydra.

WASP-72 is the primary of a binary star system. It is an F7 class dwarf star, with an internal structure just on the verge of the Kraft break. It is orbited by a planet WASP-72b. The age of WASP-72 is younger than the Sun at 3.55±0.82 billion years.

BD+00 316 is an ordinary star with a close-orbiting planetary companion in the equatorial constellation of Cetus. It is also known as WASP-71 since 2019; BD+00 316 is the stellar identifier from the Bonner Durchmusterung catalogue. With an apparent visual magnitude of 10.56, it is too faint to be visible to the naked eye. This star is located at a distance of 1,160 light-years based on parallax measurements, and is drifting further away with a heliocentric radial velocity of 7.7 km/s.

WASP-64 is a star about 1200 light-years away. It is a G7 class main-sequence star, orbited by a planet WASP-64b. It is younger than the Sun at 3.6±1.6 billion years, and it has a metal abundance similar to the Sun. The star is rotating rapidly, being spun up by the giant planet in a close orbit.

WASP-59 is a K-type main-sequence star about 379 light-years away. The star's age is essentially unconstrained by observations. WASP-59 is slightly depleted in heavy elements, having 70% of the solar abundance of iron. The star produces extremely low levels of ultraviolet light, indicating an absence of flare activity.

WASP-58 is a binary star system comprising a G-type main-sequence star and a red dwarf about 955 light-years away. WASP-58 is slightly depleted in heavy elements, having 80% of the solar abundance of iron. WASP-58 is much older than the Sun at 12.80+0.20
−2.10
billion years.

WASP-69, also named Wouri, is a K-type main-sequence star 164 light-years away. Its surface temperature is 4782±15 K. WASP-69 is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.10±0.01, and is much younger than the Sun at 2 billion years. The data regarding starspot activity of WASP-69 are inconclusive, but spot coverage of the photosphere may be very high.

WASP-88 is a F-type main-sequence star. Its surface temperature is 6450±61 K. WASP-88 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of 0.03±0.04, and is younger at an age of 3.0±1.3 billion years.

WASP-84, also known as BD+02 2056, is a G-type main-sequence star 327 light-years away in the constellation Hydra. Its surface temperature is 5350±31 K and is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.05±0.02. It is rich in carbon and depleted of oxygen. WASP-84's age is probably older than the Sun at 8.5+4.1
−5.5
billion years. The star appears to have an anomalously small radius, which can be explained by the unusually high helium fraction or by it being very young.

WASP-80 is a K-type main-sequence star about 162 light-years away. The star's age is much younger than the Sun's at 1.352±0.222 billion years. WASP-80 is similar to the Sun in concentration of heavy elements, although this measurement is highly uncertain.

References

  1. 1 2 3 4 5 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics . 616. A1. arXiv: 1804.09365 . Bibcode: 2018A&A...616A...1G . doi: 10.1051/0004-6361/201833051 . Gaia DR2 record for this source at VizieR.
  2. Høg, E.; et al. (2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy and Astrophysics. 355: L27–L30. Bibcode:2000A&A...355L..27H.
  3. Soubiran, C.; Jasniewicz, G.; Chemin, L.; Zurbach, C.; Brouillet, N.; Panuzzo, P.; Sartoretti, P.; Katz, D.; Le Campion, J. -F.; Marchal, O.; Hestroffer, D.; Thévenin, F.; Crifo, F.; Udry, S.; Cropper, M.; Seabroke, G.; Viala, Y.; Benson, K.; Blomme, R.; Jean-Antoine, A.; Huckle, H.; Smith, M.; Baker, S. G.; Damerdji, Y.; Dolding, C.; Frémat, Y.; Gosset, E.; Guerrier, A.; Guy, L. P.; et al. (2018). "Gaia Data Release 2. The catalogue of radial velocity standard stars". Astronomy and Astrophysics. 616: A7. arXiv: 1804.09370 . Bibcode:2018A&A...616A...7S. doi:10.1051/0004-6361/201832795. S2CID   52952408.
  4. Martin, Pierre-Yves (2023). "Planet WASP-76 b". exoplanet.eu. Retrieved 2024-01-17.
  5. 1 2 3 West, R. G.; Hellier, C.; Almenara, J.-M.; Anderson, D. R.; Barros, S. C. C.; Bouchy, F.; Brown, D. J. A.; Collier Cameron, A.; Deleuil, M.; Delrez, L.; Doyle, A. P.; Faedi, F.; Fumel, A.; Gillon, M.; Gómez Maqueo Chew, Y.; Hébrard, G.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S. (2016). "Three irradiated and bloated hot Jupiters". Astronomy & Astrophysics. 585: A126. arXiv: 1310.5607 . doi: 10.1051/0004-6361/201527276 . S2CID   54746373.
  6. Ngo, Henry; Knutson, Heather A.; Hinkley, Sasha; Bryan, Marta; Crepp, Justin R.; Batygin, Konstantin; Crossfield, Ian; Hansen, Brad; Howard, Andrew W.; Johnson, John A.; Mawet, Dimitri; Morton, Timothy D.; Muirhead, Philip S.; Wang, Ji (2016). "FRIENDS OF HOT JUPITERS. IV. STELLAR COMPANIONS BEYOND 50 au MIGHT FACILITATE GIANT PLANET FORMATION, BUT MOST ARE UNLIKELY TO CAUSE KOZAI–LIDOV MIGRATION". The Astrophysical Journal. 827 (1): 8. arXiv: 1606.07102 . Bibcode:2016ApJ...827....8N. doi: 10.3847/0004-637X/827/1/8 . S2CID   41083068.
  7. Ginski, C.; Mugrauer, M.; Seeliger, M.; Buder, S.; Errmann, R.; Avenhaus, H.; Mouillet, D.; Maire, A.-L.; Raetz, S. (2016). "A lucky imaging multiplicity study of exoplanet host stars – II". Monthly Notices of the Royal Astronomical Society. 457 (2): 2173–2191. arXiv: 1601.01524 . Bibcode:2016MNRAS.457.2173G. doi:10.1093/mnras/stw049. S2CID   53626523.
  8. Planet WASP-76 b at exoplanet.eu