Klann linkage

Last updated
Underwater walking robot, using Klann leg linkages in laser-cut and anodised aluminium. Klann linkage, lobsterbot.jpg
Underwater walking robot, using Klann leg linkages in laser-cut and anodised aluminium.

The Klannlinkage is a planar mechanism designed to simulate the gait of legged animal and function as a wheel replacement, a leg mechanism. The linkage consists of the frame, a crank, two grounded rockers, and two couplers all connected by pivot joints. It was developed by Joe Klann in 1994 as an expansion of Burmester curves which are used to develop four-bar double-rocker linkages such as harbor crane booms. [2] It is categorized as a modified Stephenson type III kinematic chain. [3] [4] [5] [6]

Contents

The proportions of each of the links in the mechanism are defined to optimize the linearity of the foot for one-half of the rotation of the crank. The remaining rotation of the crank allows the foot to be raised to a predetermined height before returning to the starting position and repeating the cycle. Two of these linkages coupled together at the crank and one-half cycle out of phase with each other will allow the frame of a vehicle to travel parallel to the ground.

The Klann linkage provides many of the benefits of more advanced walking vehicles without some of their limitations. It can step over curbs, climb stairs, or travel into areas that are currently not accessible with wheels but does not require microprocessor control or multitudes of actuator mechanisms. It fits into the technological space between these walking devices and axle-driven wheels.

Mechanism

Klann linkage work on the basis of kinematics where all links gives relative motion with each other. It converts the rotatory motion to linear motion, and looks like an animal walking. [7]

These figures show a single linkage in the fully extended, mid-stride, retracted, and lifted positions of the walking cycle. These four figures show the crank (rightmost link in the first figure on the left with the extended pin) in the 0, 90, 180, and 270 degree positions. F1-positions.gif
These figures show a single linkage in the fully extended, mid-stride, retracted, and lifted positions of the walking cycle. These four figures show the crank (rightmost link in the first figure on the left with the extended pin) in the 0, 90, 180, and 270 degree positions.

This animation show the working of klann mechanism.

This is a repeating animation of the legs in motion with the near legs of each set outlined in blue. A reasonable understanding of the functioning of the linkage can be gained by focusing on a specific point and following it through several cycles. Each of the pivot points is displayed in green. The three positions grounded to the frame for each leg are stationary. The upper and lower rockers move back and forth along a fixed arc and the crank traces out a circle. F4-motion.gif
This is a repeating animation of the legs in motion with the near legs of each set outlined in blue. A reasonable understanding of the functioning of the linkage can be gained by focusing on a specific point and following it through several cycles. Each of the pivot points is displayed in green. The three positions grounded to the frame for each leg are stationary. The upper and lower rockers move back and forth along a fixed arc and the crank traces out a circle.
Movement paths of each point (in blue is the ground link) Klann-MovementPaths-PatentDrawingBelow.svg
Movement paths of each point (in blue is the ground link)

Comparison with Jansen's linkage

Jansen Linkage Strandbeest-Walking-Animation.gif
Jansen Linkage

The Klann mechanism uses six links per leg, whereas the Jansen's linkage developed by Theo Jansen uses eight links per leg, with one degree of freedom.

Example leg

example leg illustrated Klann-Table1.svg
example leg illustrated

In U.S. Patent 6,260,862 there is a set of coordinates for an example leg: [4]

PointXYDescription
Fixpoints
91.3661.366first rocker arm axle
111.0090.574second rocker arm axle
151.5990.750crank shaft
fully extended ground stride position
27X0.7410.750elbow joint
29x1.3310.750crank
33x0.0000.000foot
35x0.2320.866knee joint/axle
37x0.8661.500hip joint
grounded gait position
27Y1.2770.750elbow joint
29y1.8670.750crank
33y1.0000.000foot
35y0.7680.866knee joint/axle
37y1.0001.732hip joint

See also

Related Research Articles

<span class="mw-page-title-main">Machine</span> Powered mechanical device

A machine is a physical system using power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines. Machines can be driven by animals and people, by natural forces such as wind and water, and by chemical, thermal, or electrical power, and include a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems.

In mechanical engineering, an eccentric is a circular disk solidly fixed to a rotating axle with its centre offset from that of the axle.

<span class="mw-page-title-main">Watt's linkage</span> Four-bar straight-line mechanism

In kinematics, Watt's linkage is a type of mechanical linkage invented by James Watt in which the central moving point of the linkage is constrained to travel on a nearly straight line. It was described in Watt's patent specification of 1784 for the Watt steam engine.

<span class="mw-page-title-main">Four-bar linkage</span> Mechanical linkage consisting of four links connected by joints in a loop

In the study of mechanisms, a four-bar linkage, also called a four-bar, is the simplest closed-chain movable linkage. It consists of four bodies, called bars or links, connected in a loop by four joints. Generally, the joints are configured so the links move in parallel planes, and the assembly is called a planar four-bar linkage. Spherical and spatial four-bar linkages also exist and are used in practice.

<span class="mw-page-title-main">Linkage (mechanical)</span> Assembly of systems connected to manage forces and movement

A mechanical linkage is an assembly of systems connected to manage forces and movement. The movement of a body, or link, is studied using geometry so the link is considered to be rigid. The connections between links are modeled as providing ideal movement, pure rotation or sliding for example, and are called joints. A linkage modeled as a network of rigid links and ideal joints is called a kinematic chain.

<span class="mw-page-title-main">Chebyshev lambda linkage</span> Four-bar straight-line mechanism

In kinematics, the Chebyshev Lambda Linkage is a four-bar linkage that converts rotational motion to approximate straight-line motion with approximate constant velocity. It is so-named because it looks like a lowercase Greek letter lambda (λ). The precise design trades off straightness, lack of acceleration, and the proportion of the driving rotation that is spent in the linear portion of the full curve.

<span class="mw-page-title-main">Rocker-bogie</span>

The rocker-bogie system is the suspension arrangement developed in 1988 for use in NASA's Mars rover Sojourner, and which has since become NASA's favored design for rovers. It has been used in the 2003 Mars Exploration Rover mission robots Spirit and Opportunity, on the 2012 Mars Science Laboratory (MSL) mission's rover Curiosity, the Mars 2020 rover Perseverance and ISRO's Chandrayaan-3 rover Pragyan in 2023.

<span class="mw-page-title-main">Parallel manipulator</span>

A parallel manipulator is a mechanical system that uses several computer-controlled serial chains to support a single platform, or end-effector. Perhaps, the best known parallel manipulator is formed from six linear actuators that support a movable base for devices such as flight simulators. This device is called a Stewart platform or the Gough-Stewart platform in recognition of the engineers who first designed and used them.

<span class="mw-page-title-main">Scott Russell linkage</span> Type of straight line mechanism

A Scott Russell linkage is a linkage which translates linear motion through a right angle.

In classical mechanics, a kinematic pair is a connection between two physical objects that imposes constraints on their relative movement (kinematics). German engineer Franz Reuleaux introduced the kinematic pair as a new approach to the study of machines that provided an advance over the motion of elements consisting of simple machines.

<span class="mw-page-title-main">Legged robot</span> Type of mobile robot

Legged robots are a type of mobile robot which use articulated limbs, such as leg mechanisms, to provide locomotion. They are more versatile than wheeled robots and can traverse many different terrains, though these advantages require increased complexity and power consumption. Legged robots often imitate legged animals, such as humans or insects, in an example of biomimicry.

<span class="mw-page-title-main">Straight-line mechanism</span> Mechanisms generating real or approximate straight line motion

A straight-line mechanism is a mechanism that converts any type of rotary or angular motion to perfect or near-perfect straight-line motion, or vice versa. Straight-line motion is linear motion of definite length or "stroke", every forward stroke being followed by a return stroke, giving reciprocating motion. The first such mechanism, patented in 1784 by James Watt, produced approximate straight-line motion, referred to by Watt as parallel motion.

<span class="mw-page-title-main">Mondo spider</span> Walking machine

The Mondo Spider is a ride-on walking machine propelled via eight steel legs in a walking motion utilizing the Klann Linkage.

<span class="mw-page-title-main">Cognate linkage</span> Linkages of different dimensions with the same output motion

In kinematics, cognate linkages are linkages that ensure the same coupler curve geometry or input-output relationship, while being dimensionally dissimilar. In case of four-bar linkage coupler cognates, the Roberts–Chebyshev Theorem, after Samuel Roberts and Pafnuty Chebyshev, states that each coupler curve can be generated by three different four-bar linkages. These four-bar linkages can be constructed using similar triangles and parallelograms, and the Cayley diagram.

<span class="mw-page-title-main">Mechanism (engineering)</span> Device used to transfer forces via non-electric means

In engineering, a mechanism is a device that transforms input forces and movement into a desired set of output forces and movement. Mechanisms generally consist of moving components which may include:

<span class="mw-page-title-main">Jansen's linkage</span> Planar leg mechanism

Jansen's linkage is a planar leg mechanism designed by the kinetic sculptor Theo Jansen to generate a smooth walking motion. Jansen has used his mechanism in a variety of kinetic sculptures which are known as Strandbeesten. Jansen's linkage bears artistic as well as mechanical merit for its simulation of organic walking motion using a simple rotary input. These leg mechanisms have applications in mobile robotics and in gait analysis.

<span class="mw-page-title-main">Six-bar linkage</span> 1-DoF mechanism with 6 links and 7 joints

In mechanics, a six-bar linkage is a mechanism with one degree of freedom that is constructed from six links and seven joints. An example is the Klann linkage used to drive the legs of a walking machine.

<span class="mw-page-title-main">Leg mechanism</span> Mechanical system that walks

A leg mechanism is a mechanical system designed to provide a propulsive force by intermittent frictional contact with the ground. This is in contrast with wheels or continuous tracks which are intended to maintain continuous frictional contact with the ground. Mechanical legs are linkages that can have one or more actuators, and can perform simple planar or complex motion. Compared to a wheel, a leg mechanism is potentially better fitted to uneven terrain, as it can step over obstacles.

<span class="mw-page-title-main">Eight-bar linkage</span> 1-DoF mechanism made from 8 links and 10 joints

In kinematics, an eight-bar linkage is a mechanism with one degree of freedom that is constructed from eight links and ten joints. These linkages are rare compared to four-bar and six-bar linkages, but two well-known examples are the Peaucellier linkage and the linkage designed by Theo Jansen for his walking machines.

<span class="mw-page-title-main">Slider-crank linkage</span> Mechanism for conveting rotary motion into linear motion

A slider-crank linkage is a four-link mechanism with three revolute joints and one prismatic, or sliding, joint. The rotation of the crank drives the linear movement of the slider, or the expansion of gases against a sliding piston in a cylinder can drive the rotation of the crank.

References

  1. Rooney, T.; Pearson, M.; Welsby, J.; Horsfield, I.; Sewell, R.; Dogramadzi, S. (6–8 September 2011), Artificial active whiskers for guiding underwater autonomous walking robots (PDF), CLAWAR 2011, Paris, France{{citation}}: CS1 maint: location missing publisher (link)
  2. "Mechanical Spider". Klann Research And Development, LLC. Archived from the original on 14 April 2004. Retrieved 22 November 2016.
  3. U.S. Provisional Application Ser. No. 60/074,425, was filed on Feb. 11, 1998
  4. 1 2 U.S. Patent 6,260,862
  5. U.S. Patent 6,364,040
  6. U.S. Patent 6,478,314
  7. Ganapati, Priya. "Robotic Spider Melds Legos and 3-D Printing". Wired . Retrieved 22 November 2016.