Autonomous logistics

Last updated

Autonomous logistics describes systems that provide unmanned, autonomous transfer of equipment, baggage, people, information or resources from point-to-point with minimal human intervention. Autonomous logistics is a new area being researched and currently there are few papers on the topic, with even fewer systems developed or deployed. With web enabled cloud software there are companies focused on developing and deploying such systems which will begin coming online in 2018.[ needs update ]

Contents

Autonomous logistics vehicles

There are several subclasses of autonomous logistics vehicles:

Ground autonomous logistics
Based on Unmanned ground vehicle technology, a large autonomous logistics tracked carrier, which can be deployed in a tropical forest for day and night, has been developed. [1] [2]
Oshkosh Corporation's MTVR-based TerraMax just before the 2004 DARPA Grand Challenge Terramax-DARPAChallenge04.jpg
Oshkosh Corporation's MTVR-based TerraMax just before the 2004 DARPA Grand Challenge

Another example is the TerraMax autonomous truck based on Oshkosh's Medium Tactical Vehicle Replacement (MTVR) military truck platform. Most recently, TerraMax competed in the 2007 Darpa Urban Challenge. The MTVR was designed for the U.S. Marine Corps with a 70% off-road mission profile. TerraMax's unmanned ground vehicle kit does not interfere with the conventional operation of the vehicle. A robust sensor suite allows for 360-degree situational awareness around TerraMax. Elements of the autonomous navigation kit could be used to enhance driver awareness. The complete kit could be used in applications such as snow removal on airport runways.

Aerial autonomous logistics
Based on unmanned aerial vehicle technology, aerial autonomous logistics (or logistics UAVs) provides transfer of resources and equipment in disaster relief situations, replenishment operations, reconnaissance operations where information is gathered, and general parcel or package delivery.
Progress cargo spacecraft Progress M-52.jpg
Progress cargo spacecraft
Space autonomous logistics
Describes the ability to provide logistics to and from space, be that orbital, lunar or beyond. Current space logistics vehicle examples are the Progress spacecraft, Russian expendable freighter uncrewed resupply spacecraft and the Automated Transfer Vehicle, expendable uncrewed resupply spacecraft developed by the European Space Agency.
Above Water autonomous logistics
Based on unmanned surface vehicle technology, this class of vehicles provides a range of surface fleet replenishment and equipment transfer capabilities.
Subsea autonomous logistics
Using autonomous underwater vehicle technology, these vehicles provide re-supply to underwater facilities, reconnaissance of underwater structures, emergency recovery capability, and so on.

Agent-based logistics

Shipping containers handle most of today's intercontinental transport of packaged goods. Managing them in terms of planning and scheduling is a challenging task due to the complexity and dynamics of the involved processes. Hence, recent developments show an increasing trend towards autonomous control with software agents acting on behalf of the logistic objects. Despite of the high degree of autonomy it is still necessary to cooperate in order to achieve certain goals. [3]

The current trends and recent changes in logistics lead to new, complex and partially conflicting requirements for logistic planning and control systems. Due to the distributed nature of logistics, the usage of agent technology is promising. Due to the mobile nature of logistics, the usage of mobile agent technology is promising as well. Scenarios of usage of mobile agents in logistics has been envisioned. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Progress (spacecraft)</span> Russian expendable freighter spacecraft

The Progress is a Russian expendable cargo spacecraft. Its purpose is to deliver the supplies needed to sustain a human presence in orbit. While it does not carry a crew, it can be boarded by astronauts when docked to a space station, hence it is classified as crewed by its manufacturer. Progress is derived from the crewed Soyuz spacecraft and launches on the same launch vehicle, a Soyuz rocket.

<span class="mw-page-title-main">Automated Transfer Vehicle</span> Uncrewed cargo spacecraft developed by the European Space Agency

The Automated Transfer Vehicle, originally Ariane Transfer Vehicle or ATV, was an expendable cargo spacecraft developed by the European Space Agency (ESA), used for space cargo transport in 2008–2015. The ATV design was launched to orbit five times, exclusively by the Ariane 5 heavy-lift launch vehicle. It effectively was a larger European counterpart to the Russian Progress cargo spacecraft for carrying upmass to a single destination—the International Space Station (ISS)—but with three times the capacity.

<span class="mw-page-title-main">Logistics automation</span> Application of computer software or automated machinery

Logistics automation is the application of computer software or automated machinery to improve the efficiency of logistics operations. Typically this refers to operations within a warehouse or distribution center, with broader tasks undertaken by supply chain engineering systems and enterprise resource planning systems.

<span class="mw-page-title-main">Remote-control vehicle</span> Type of vehicle

A remote-control vehicle is defined as any vehicle that is teleoperated by a means that does not restrict its motion with an origin external to the device. This is often a radio-control device, a cable between the controller and the vehicle, or an infrared controller.

<span class="mw-page-title-main">Oshkosh Corporation</span> American industrial company

Oshkosh Corporation, formerly Oshkosh Truck, is an American industrial company that designs and builds specialty trucks, military vehicles, truck bodies, airport fire apparatus, and access equipment. The corporation also owns Pierce Manufacturing, a fire apparatus manufacturer in Appleton, Wisconsin, and JLG Industries, a leading manufacturer of lift equipment, including aerial lifts, boom lifts, scissor lifts, telehandlers and low-level access lifts.

<span class="mw-page-title-main">Medium Tactical Vehicle Replacement</span> Family of 6x6 tactical trucks with 7-ton payload (U.S. tons)

The Medium Tactical Vehicle Replacement (MTVR) is a series of vehicles used by the U.S. Marines. The first MTVRs were delivered in late 1999. The MTVR is the equivalent of the U.S. Army’s Family of Medium Tactical Vehicles (FMTV); the Marines do not use the FMTV and the Army does not use the MTVR.

<span class="mw-page-title-main">Unmanned ground vehicle</span> Type of vehicle

An unmanned ground vehicle (UGV) is a vehicle that operates while in contact with the ground and without an onboard human presence. UGVs can be used for many applications where it may be inconvenient, dangerous, or impossible to have a human operator present. Generally, the vehicle will have a set of sensors to observe the environment, and will either autonomously make decisions about its behavior or pass the information to a human operator at a different location who will control the vehicle through teleoperation.

<span class="mw-page-title-main">Mobile robot</span> Type of robot

A mobile robot is an automatic machine that is capable of locomotion. Mobile robotics is usually considered to be a subfield of robotics and information engineering.

<span class="mw-page-title-main">Palletized Load System</span> 10×10 heavy tactical truck

The Palletized Load System (PLS) is a truck-based logistics system that entered service in the United States Army in 1993. It performs long and short distance freight transport, unit resupply, and other missions in the tactical environment to support modernized and highly mobile combat units. It provides rapid movement of combat configured loads of ammunition and all classes of supply, shelters and intermodal containers. It is similar to systems such as the British Demountable Rack Offload and Pickup System (DROPS).

<span class="mw-page-title-main">Vehicular automation</span> Automation for various purposes of vehicles

Vehicular automation involves the use of mechatronics, artificial intelligence, and multi-agent systems to assist the operator of a vehicle. These features and the vehicles employing them may be labeled as intelligent or smart. A vehicle using automation for difficult tasks, especially navigation, to ease but not entirely replace human input, may be referred to as semi-autonomous, whereas a vehicle relying solely on automation is called robotic or autonomous. Both of these types are instantiated in today's various self-driving cars, unmanned surface vehicles, autonomous trains, advanced airliner autopilots, drone aircraft, and planetary rovers, as well as guided rockets and missiles. After the invention of the integrated circuit, the sophistication of automation technology increased. Manufacturers and researchers subsequently added a variety of automated functions to automobiles and other vehicles. The technology involved in implementing autonomous vehicles is very expansive, ranging from technological improvements in the vehicle itself to the environment and objects around the vehicle. As the use of automated vehicles increases, they are becoming more influential in human lives. Although automated vehicles bring various benefits, they also come with various concerns. Also, there are still technological challenges that need to be overcome in order to make vehicular automation robust and scalable.

<span class="mw-page-title-main">TerraMax</span> Trademark for autonomous/unmanned ground vehicle technology

TerraMax is the trademark for autonomous/unmanned ground vehicle technology developed by Oshkosh Defense. Primary military uses for the technology are seen as reconnaissance missions and freight transport in high-risk areas so freeing soldiers from possible attacks, ambushes or the threat of mines and IEDs. The technology could also be used in civilian settings, such as autonomous snow clearing at airports.

<span class="mw-page-title-main">Logistics Vehicle System</span> American military vehicle family

The Logistics Vehicle System (LVS), nicknamed by U.S. Marines as "Dragon Wagon", is a modular assortment of eight-wheel drive all-terrain vehicle unit combinations used by the United States Marine Corps.

Squad Mission Support System is an unmanned all terrain wheeled vehicle developed by Lockheed Martin.

Space logistics is "the theory and practice of driving space system design for operability and supportability, and of managing the flow of materiel, services, and information needed throughout a space system lifecycle." It includes terrestrial logistics in support of space travel, including any additional "design and development, acquisition, storage, movement, distribution, maintenance, evacuation, and disposition of space materiel", movement of people in space, and contracting and supplying any required support services for maintaining space travel. The space logistics research and practice primarily focus on the modeling and management of the astro-logistics supply chain from Earth and on to destinations throughout the solar system as well as the system architecture strategies to minimize both logistics requirements and operational costs of human and robotic operations in space.

<span class="mw-page-title-main">Uncrewed vehicle</span> Type of vehicle

An uncrewed vehicle or unmanned vehicle is a vehicle without a person on board. Uncrewed vehicles can either be under telerobotic control—remote controlled or remote guided vehicles—or they can be autonomously controlled—autonomous vehicles—which are capable of sensing their environment and navigating on their own.

<span class="mw-page-title-main">Docking and berthing of spacecraft</span> Joining of two or more space vehicles

Docking and berthing of spacecraft is the joining of two space vehicles. This connection can be temporary, or partially permanent such as for space station modules.

<span class="mw-page-title-main">National Robotics Engineering Center</span> Operating unit within the Robotics Institute of Carnegie Mellon University

The National Robotics Engineering Center (NREC) is an operating unit within the Robotics Institute (RI) of Carnegie Mellon University. NREC works closely with government and industry clients to apply robotic technologies to real-world processes and products, including unmanned vehicle and platform design, autonomy, sensing and image processing, machine learning, manipulation, and human–robot interaction.

<span class="mw-page-title-main">Logistic Vehicle System Replacement</span> 10x10 tactical trucks with up to 16.5 / 22.5 ton off-road / on-road payload (MKR18 cargo)

The Logistic Vehicle System Replacement (LVSR) is a family of heavy-duty military logistics vehicles of the United States Marine Corps (USMC) based on a common 5-axle ten-wheel drive (10x10) chassis. The vehicles vary in individual configuration by mission requirements, with three variants in service: a cargo, a wrecker and a tractor truck. The LVSR was designed and is manufactured by Oshkosh Defense.

The drone in a box is an emerging form of autonomous unmanned aerial vehicle (UAV) technology that uses drones that deploy from and return to self-contained landing “boxes.”

CSSC unmanned vehicles (UUV)s are uncrewed vehicles developed in the People's Republic of China (PRC) by China State Shipbuilding Corporation (CSSC), most of which are in service with various Chinese governmental agencies/departments, and government-owned enterprises.

References

  1. "Autonomous armoured logistics carrier for natural environments" IBANEZ-GUZMAN Javier, XU JIAN, CHUN WAH CHAN, TAY Alex - IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, JAPON (2004) ISBN   0-7803-8463-6
  2. "Autonomous Vehicle Logistic System: Joint Routing and Charging Strategy" James J.Q. Yu and Albert Y.S. Lam - IEEE Transactions on Intelligent Transportation Systems, Volume 19, Issue 7, Jul. 2018, Pages 2175-2187. doi : 10.1109/TITS.2017.2766682
  3. Schuldt, A. Multiagent coordination enabling autonomous logistics. Springer New York, 2011, ISBN   978-3-642-20091-5 (Print) ISBN   978-3-642-20092-2 (Online).
  4. Becker, Markus; Singh, Gulshanara; Wenning, Bernd Ludwig; Gorg, Carmelita (2007). "On mobile agents for autonomous logistics: an analysis of mobile agents considering the fan out and sundry strategies". International Journal of Services Operations and Informatics. 2 (2): 114–130. doi:10.1504/IJSOI.2007.014515. ISSN   1741-539X.