Kojic acid

Last updated
Kojic acid
KojicAcid.svg
Names
Preferred IUPAC name
5-Hydroxy-2-(hydroxymethyl)-4H-pyran-4-one
Other names
Kojic acid, 5-Hydroxy-2-(hydroxymethyl)-4-pyrone, 2-hydroxymethyl-5-hydroxy-γ-pyrone
Identifiers
3D model (JSmol)
120895
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.007.203 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 207-922-4
3620
KEGG
PubChem CID
RTECS number
  • UQ0875000
UNII
  • InChI=1S/C6H6O4/c7-2-4-1-5(8)6(9)3-10-4/h1,3,7,9H,2H2 Yes check.svgY
    Key: BEJNERDRQOWKJM-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H6O4/c7-2-4-1-5(8)6(9)3-10-4/h1,3,7,9H,2H2
  • O=C1/C=C(\O/C=C1/O)CO
Properties
C6H6O4
Molar mass 142.110 g·mol−1
Appearancewhite
Melting point 152 to 155 °C (306 to 311 °F; 425 to 428 K)
Slight
Acidity (pKa)9.40 [1]
Hazards
GHS labelling:
GHS-pictogram-silhouette.svg
Warning
H351
P201, P280, P308+P313
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Kojic acid is an organic compound with the formula HOCH2C5H2O2OH. It is a derivative of 4-pyrone that functions in nature as a chelation agent produced by several species of fungi, especially Aspergillus oryzae , which has the Japanese common name koji. [2] [3] [4] Kojic acid is a by-product in the fermentation process of malting rice, for use in the manufacturing of sake, the Japanese rice wine. [2] It is a mild inhibitor of the formation of pigment in plant and animal tissues, and is used in food and cosmetics to preserve or change colors of substances. [5] It forms a bright red complex with ferric ions. [6]

Contents

Biosynthesis

13C-Labeling studies have revealed at least two pathways to kojic acid. In the usual route, dehydratase enzymes convert glucose to kojic acid. Pentoses are also viable precursors in which case dihydroxyacetone is invoked as an intermediate. [2]

Applications

Kojic acid may be used on cut fruits to prevent oxidative browning, in seafood to preserve pink and red colors, and in cosmetics to lighten skin. As an example of the latter, it is used to treat skin diseases like melasma. [7] Kojic acid also has antibacterial and antifungal properties.[ citation needed ] The cocrystals of kojic acid with quercetin were found to have two times better cytotoxic activity to human cervical cancer cells (HeLa) and human colon cancer cells (Caco-2) in comparison with quercetin itself. [8]

Other effects

Kojic acid has been shown to protect Chinese hamster ovary cells against ionizing radiation-induced damage. When exposed to a lethal dose of 3 Gy gamma radiation, dogs pretreated with kojic acid had a 51-day survival rate of 66.7% while the control group died within 16 days. [9]

Chemical reactions

Structure of the coordination complex Fe(kojate)3. Color code: red = O, gray = C, dark blue = Fe, white = H. LAJREV.jpg
Structure of the coordination complex Fe(kojate)3. Color code: red = O, gray = C, dark blue = Fe, white = H.

Deprotonation of the ring-OH group converts kojic acid to kojate. Kojate chelates to iron(III), forming a red complex Fe(HOCH2C5OH2O2)3. This kind of reaction may be the basis of the biological function of kojic aicd, that is, to solubilize ferric iron. [10]

Being a multifunctional molecule, kojic acid has diverse organic chemistry. The hydroxymethyl group gives the chloromethyl derivative upon treatment with thionyl chloride. [11]

Safety

Kojic acid has been shown to be carcinogenic. [12]

Related Research Articles

Pyrimidine is an aromatic, heterocyclic, organic compound similar to pyridine. One of the three diazines, it has nitrogen atoms at positions 1 and 3 in the ring. The other diazines are pyrazine and pyridazine.

<span class="mw-page-title-main">Porphyrin</span> Heterocyclic organic compound with four modified pyrrole subunits

Porphyrins are a group of heterocyclic macrocycle organic compounds, composed of four modified pyrrole subunits interconnected at their α carbon atoms via methine bridges (=CH−). In vertebrates, an essential member of the porphyrin group is heme, which is a component of hemoproteins, whose functions include carrying oxygen in the bloodstream. In plants, an essential porphyrin derivative is chlorophyll, which is involved in light harvesting and electron transfer in photosynthesis.

<span class="mw-page-title-main">Hyperpigmentation</span> Skin condition

Hyperpigmentation is the darkening of an area of skin or nails caused by increased melanin.

<span class="mw-page-title-main">Benzofuran</span> Heterocyclic compound consisting of fused benzene and furan rings

Benzofuran is the heterocyclic compound consisting of fused benzene and furan rings. This colourless liquid is a component of coal tar. Benzofuran is the structural nucleus of many related compounds with more complex structures. For example, psoralen is a benzofuran derivative that occurs in several plants.

<span class="mw-page-title-main">Chalcone</span> Chemical compound

Chalcone is the organic compound C6H5C(O)CH=CHC6H5. It is an α,β-unsaturated ketone. A variety of important biological compounds are known collectively as chalcones or chalconoids. They are widely known bioactive substances, fluorescent materials, and chemical intermediates.

<span class="mw-page-title-main">1,10-Phenanthroline</span> Heterocyclic organic compound

1,10-Phenanthroline (phen) is a heterocyclic organic compound. It is a white solid that is soluble in organic solvents. The 1,10 refer to the location of the nitrogen atoms that replace CH's in the hydrocarbon called phenanthrene.

<span class="mw-page-title-main">Hydroquinone</span> Chemical compound

Hydroquinone, also known as benzene-1,4-diol or quinol, is an aromatic organic compound that is a type of phenol, a derivative of benzene, having the chemical formula C6H4(OH)2. It has two hydroxyl groups bonded to a benzene ring in a para position. It is a white granular solid. Substituted derivatives of this parent compound are also referred to as hydroquinones. The name "hydroquinone" was coined by Friedrich Wöhler in 1843.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

<span class="mw-page-title-main">Quinoxaline</span> Chemical compound

A quinoxaline, also called a benzopyrazine, in organic chemistry, is a heterocyclic compound containing a ring complex made up of a benzene ring and a pyrazine ring. It is isomeric with other naphthyridines including quinazoline, phthalazine and cinnoline. It is a colorless oil that melts just above room temperature. Although quinoxaline itself is mainly of academic interest, quinoxaline derivatives are used as dyes, pharmaceuticals, and antibiotics such as olaquindox, carbadox, echinomycin, levomycin and actinoleutin.

The Friedländer synthesis is a chemical reaction of 2-aminobenzaldehydes with ketones to form quinoline derivatives. It is named after German chemist Paul Friedländer (1857–1923).

<span class="mw-page-title-main">Cysteamine</span> Chemical compound

Cysteamine is a chemical compound that can be biosynthesized in mammals, including humans, by the degradation of coenzyme A. The intermediate pantetheine is broken down into cysteamine and pantothenic acid. It is the biosynthetic precursor to the neurotransmitter hypotaurine.

An alpha hydroxy carboxylic acid or α-hydroxy carboxylic acid (AHA) is a carboxylic acid containing a hydroxy functional group separated by one carbon atoms. They are related to beta hydroxy acids, in which the two functional groups are separated by two carbon atoms. Prominent examples are glycolic acid, lactic acid, mandelic acid, and citric acid.

Pyrylium is a cation with formula C5H5O+, consisting of a six-membered ring of five carbon atoms, each with one hydrogen atom, and one positively charged oxygen atom. The bonds in the ring are conjugated as in benzene, giving it an aromatic character. In particular, because of the positive charge, the oxygen atom is trivalent. Pyrilium is a mono-cyclic and heterocyclic compound, one of the oxonium ions.

<span class="mw-page-title-main">Skin whitening</span> Practice of using chemical substances to lighten the skin

Skin whitening, also known as skin lightening and skin bleaching, is the practice of using chemical substances in an attempt to lighten the skin or provide an even skin color by reducing the melanin concentration in the skin. Several chemicals have been shown to be effective in skin whitening, while some have proven to be toxic or have questionable safety profiles. This includes mercury compounds which may cause neurological problems and kidney problems.

<span class="mw-page-title-main">Tropone</span> Chemical compound

Tropone or 2,4,6-cycloheptatrien-1-one is an organic compound with some importance in organic chemistry as a non-benzenoid aromatic. The compound consists of a ring of seven carbon atoms with three conjugated alkene groups and a ketone group. The related compound tropolone (2-hydroxy-2,4,6-cycloheptatrien-1-one) has an additional alcohol group next to the ketone. Tropones are uncommon in natural products, with the notable exception of the 2-hydroxyl derivatives, which are called tropolones.

<span class="mw-page-title-main">Sydnone</span> Chemical compound

Sydnones are mesoionic heterocyclic chemical compounds possessing a 1,2,3-oxadiazole core with a keto group in the 5 position. Like other mesoionic compounds they are di-polar, possessing both positive and negative charges which are delocalized across the ring. Recent computational studies have indicated that sydnones and other similar mesoionic compounds are nonaromatic, "though well-stabilized in two separate regions by electron and charge delocalization." Sydnones are heterocyclic compounds named after the city of Sydney, Australia.

4-Pyrone (γ-pyrone or pyran-4-one) is an unsaturated cyclic chemical compound with the molecular formula C5H4O2.It is isomeric with 2-pyrone.

A spiropyran is a type of organic chemical compound, known for photochromic properties that provide this molecule with the ability of being used in medical and technological areas. Spiropyrans were discovered in the early twentieth century. However, it was in the middle twenties when Fisher and Hirshbergin observed their photochromic characteristics and reversible reaction. In 1952, Fisher and co-workers announced for the first time photochromism in spiropyrans. Since then, there have been many studies on photochromic compounds that have continued up to the present.

<span class="mw-page-title-main">Triacetic acid lactone</span> Chemical compound

Triacetic acid lactone is an organic compound derived enzymatically from glucose. It is a light yellow solid that is soluble in organic solvents.

A nitroalkene, or nitro olefin, is a functional group combining the functionality of its constituent parts, an alkene and nitro group, while displaying its own chemical properties through alkene activation, making the functional group useful in specialty reactions such as the Michael reaction or Diels-Alder additions.

References

  1. Bjerrum, J., et al. Stability Constants, Chemical Society, London, 1958.
  2. 1 2 3 Bentley, R. (2006). "From miso, sake and shoyu to cosmetics: a century of science for kojic acid". Nat. Prod. Rep. 23 (6): 1046–1062. doi:10.1039/b603758p. PMID   17119644.
  3. Yabuta T (1924). "The constitution of kojic acid, a γ-pyrone derivative formed by Aspergillus oryzae from carbohydrates". Journal of the Chemical Society . 125: 575–587. doi:10.1039/ct9242500575.
  4. Parvez, Shoukat; Kang, Moonkyu; Chung, Hwan-Suck; Cho, Chongwoon; Hong, Moo-Chang; Shin, Min-Kyu; Bae, Hyunsu (2006). "Survey and mechanism of skin depigmenting and lightening agents". Phytotherapy Research. 20 (11): 921–34. doi:10.1002/ptr.1954. PMID   16841367. S2CID   22156361.
  5. "Kojic acid and enzymatic browning]". Food and Agriculture Organization of the United Nations. 2000. Archived from the original on 2008-03-04.
  6. Nurchi, Valeria M.; Lachowicz, Joanna I.; Crisponi, Guido; Murgia, Sergio; Arca, Massimiliano; Pintus, Anna; Gans, Peter; Niclos-Gutierrez, Juan; Domínguez-Martín, Alicia; Castineiras, Alfonso; Remelli, Maurizio (2011-05-27). "Kojic acid derivatives as powerful chelators for iron(III) and aluminium(III)". Dalton Transactions. 40 (22): 5984–5998. doi:10.1039/C1DT00005E. ISSN   1477-9234. PMID   21552634.
  7. Melasma Archived 2009-12-23 at the Wayback Machine , American Academy of Dermatology
  8. Veverka, M., Dubaj, T., Gallovič, J., Jorík, V., Veverková, E., Danihelová, M., & Šimon, P. (2015). Cocrystals of quercetin: synthesis, characterization, and screening of biological activity. Monatshefte für Chemie-Chemical Monthly,146(1), 99-109 doi : 10.1007/s00706-014-1314-6
  9. Wang, Kai; Li, Peng-Fei; Han, Chun-Guang; Du, Li; Liu, Chao; Hu, Ming; Lian, Shi-Jie; Liu, Yong-Xue (2014). "Protective Effects of Kojic Acid on the Periphery Blood and Survival of Beagle Dogs after Exposure to a Lethal Dose of Gamma Radiation". Radiation Research. 182 (6): 666–673. Bibcode:2014RadR..182..666W. doi:10.1667/RR13823.1. PMID   25409121. S2CID   19066551.
  10. Zaremba, K.; Lasocha, W.; Adamski, A.; Stanek, J.; Pattek-Janczyk, A. (2007). "Crystal Structure and Magnetic Properties of Tris(2-hydroxymethyl-4-oxo-4H-pyran- 5-olato-κ2O5,O4)iron(III)". Journal of Coordination Chemistry. 60 (14): 1537–1546. doi:10.1080/00958970601084243. S2CID   97627687.
  11. Agyemang, Nana; Murelli, Ryan P. (2019). "Synthesis of 5-Hydroxy-4-methoxy-2-methylpyrylium Trifluoromethanesulfonate from Kojic Acid". Organic Syntheses. 96: 494–510. doi: 10.15227/orgsyn.096.0494 . S2CID   238194561.
  12. "Final Report of the Safety Assessment of Kojic Acid". ResearchGate . December 2010.