LEKTI

Last updated
SPINK5
Protein SPINK5 PDB 1h0z.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SPINK5 , LEKTI, LETKI, NETS, NS, VAKTI, serine peptidase inhibitor, Kazal type 5, serine peptidase inhibitor Kazal type 5
External IDs OMIM: 605010 MGI: 1919682 HomoloGene: 4987 GeneCards: SPINK5
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001127698
NM_001127699
NM_006846

NM_001081180

RefSeq (protein)

NP_001121170
NP_001121171
NP_006837

NP_001074649

Location (UCSC) Chr 5: 148.03 – 148.14 Mb Chr 18: 44.1 – 44.16 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Lympho-epithelial Kazal-type-related inhibitor (LEKTI) also known as serine protease inhibitor Kazal-type 5 (SPINK5) is a protein that in humans is encoded by the SPINK5 gene. [5] [6]

Contents

Structure and function

LEKTI is a large multidomain serine protease inhibitor expressed in stratified epithelial tissue. It consists of 15 domains that are cleaved into smaller, functional fragments by the protease furin. Only two of these domains (2 and 15) contain 6 evenly spaced cysteines responsible for 3 intramolecular disulfide bonds characteristic of Kazal-type related inhibitors. The remaining domains contain 4 cysteines. [7] These disulfide bonds force the molecule into a rigid conformation that enables the protein to interact with a target protease via an extended beta-sheet. All domains (excepting 1, 2 and 15) contain an arginine at P1, indicating trypsin-like proteases are the likely targets. [7]

In the epidermis, LEKTI is implicated in the regulation of desquamation via its ability to selectively inhibit KLK5, KLK7 and KLK14. [8] Recombinant full length LEKTI inhibits the exogenous serine proteases trypsin, plasmin, subtilisin A, cathepsin G and human neutrophil elastase. [9]

LEKTI may play a role in skin and hair morphogenesis and anti-inflammatory and/or antimicrobial protection of mucous epithelia. [6]

Gene

SPINK5 is a member of a gene family cluster located on chromosome 5q32, [10] which encode inhibitors of serine proteases. This includes other epidermal proteins SPINK6 and LEKTI-2 (SPINK9). The SPINK5 gene is 61 kb in length and contains 33 exons. [7] Alternative processing of SPINK5 results in the formation of three different gene products, which have been identified in differentiated keratinocytes. [11]

Clinical significance

Mutations in the SPINK5 gene result in Netherton syndrome, a disorder characterized by ichthyosis and specific immune system defects. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Stratum corneum</span> Outermost layer of the epidermis

The stratum corneum is the outermost layer of the epidermis. Consisting of dead tissue, it protects underlying tissue from infection, dehydration, chemicals and mechanical stress. It is composed of 15–20 layers of flattened cells with no nuclei and cell organelles.

<span class="mw-page-title-main">Desquamation</span> Medical condition

Desquamation occurs when the outermost layer of a tissue, such as the skin, is shed. The term is from Latin desquamare 'to scrape the scales off a fish'.

<span class="mw-page-title-main">ADAMTS2</span> Protein-coding gene in the species Homo sapiens

A disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAM-TS2) also known as procollagen I N-proteinase is an enzyme that in humans is encoded by the ADAMTS2 gene.

Kallikreins are a subgroup of serine proteases, enzymes capable of cleaving peptide bonds in proteins. In humans, plasma kallikrein has no known paralogue, while tissue kallikrein-related peptidases (KLKs) encode a family of fifteen closely related serine proteases. These genes are localised to chromosome 19q13, forming the largest contiguous cluster of proteases within the human genome. Kallikreins are responsible for the coordination of various physiological functions including blood pressure, semen liquefaction and skin desquamation.

<span class="mw-page-title-main">Lamellar bodies</span> Secretory organelles

In cell biology, lamellar bodies are secretory organelles found in type II alveolar cells in the lungs, and in keratinocytes in the skin. They are oblong structures, appearing about 300-400 nm in width and 100-150 nm in length in transmission electron microscopy images. Lamellar bodies in the alveoli of the lungs fuse with the cell membrane and release pulmonary surfactant into the extracellular space.

<span class="mw-page-title-main">Netherton syndrome</span> Medical condition

Netherton syndrome is a severe, autosomal recessive form of ichthyosis associated with mutations in the SPINK5 gene. It is named after Earl W. Netherton (1910–1985), an American dermatologist who discovered it in 1958.

<span class="mw-page-title-main">Trypsin 1</span> Protein-coding gene in the species Homo sapiens

Trypsin-1, also known as cationic trypsinogen, is a protein that in humans is encoded by the PRSS1 gene. Trypsin-1 is the main isoform of trypsinogen secreted by pancreas, the others are trypsin-2, and trypsin-3 (meso-trypsinogen).

<span class="mw-page-title-main">SPINK1</span> Protein-coding gene in the species Homo sapiens

Pancreatic secretory trypsin inhibitor (PSTI) also known as serine protease inhibitor Kazal-type 1 (SPINK1) or tumor-associated trypsin inhibitor (TATI) is a protein that in humans is encoded by the SPINK1 gene.

<span class="mw-page-title-main">Kallikrein-5</span> Protein-coding gene in the species Homo sapiens

Kallikrein-5, formerly known as stratum corneum tryptic enzyme (SCTE), is a serine protease expressed in the epidermis. In humans it is encoded by the KLK5 gene. This gene is one of the fifteen kallikrein subfamily members located in a cluster on chromosome 19. Its expression is up-regulated by estrogens and progestins. Alternative splicing results in multiple transcript variants encoding the same protein.

<span class="mw-page-title-main">Serine protease HTRA1</span> Protein-coding gene in the species Homo sapiens

Serine protease HTRA1 is an enzyme that in humans is encoded by the HTRA1 gene. The HTRA1 protein is composed of four distinct protein domains. They are from amino-terminus to carboxyl-terminus an Insulin-like growth factor binding domain, a kazal domain, a trypsin-like peptidase domain and a PDZ domain.

<span class="mw-page-title-main">SERPINB6</span> Protein-coding gene in the species Homo sapiens

Serpin B6 is a protein that in humans is encoded by the SERPINB6 gene.

<span class="mw-page-title-main">Corneodesmosin</span> Protein-coding gene in the species Homo sapiens

Corneodesmosin is a protein that in humans is encoded by the CDSN gene.

<span class="mw-page-title-main">KLK7</span> Protein-coding gene in the species Homo sapiens

Kallikrein-related peptidase 7 (KLK7) is a serine protease that in humans is encoded by the KLK7 gene. KLK7 was initially purified from the epidermis and characterised as stratum corneum chymotryptic enzyme (SCCE). It was later identified as the seventh member of the human kallikrein family, which includes fifteen homologous serine proteases located on chromosome 19 (19q13).

<span class="mw-page-title-main">KLK14</span> Protein-coding gene in the species Homo sapiens

Kallikrein-14 is a protein that in humans is encoded by the KLK14 gene.

<span class="mw-page-title-main">SERPINB13</span> Gene of the species Homo sapiens

Serpin B13 is a protein that in humans is encoded by the SERPINB13 gene.

<span class="mw-page-title-main">SPINK2</span> Protein-coding gene in the species Homo sapiens

Serine protease inhibitor Kazal-type 2 also known as acrosin-trypsin inhibitor is a protein that in humans is encoded by the SPINK2 gene.

Trichorrhexis invaginata is a distinctive hair shaft abnormality that may occur sporadically, either in normal hair or with other hair shaft abnormalities, or regularly as a marker for Netherton syndrome. The primary defect appears to be abnormal keratinization of the hair shaft in the keratogenous zone, allowing for intussusception of the fully keratinized and hard distal shaft into the incompletely keratinized and soft proximal portion of the shaft.

<span class="mw-page-title-main">Kazal domain</span>

The Kazal domain is an evolutionary conserved protein domain usually indicative of serine protease inhibitors. However, kazal-like domains are also seen in the extracellular part of agrins, which are not known to be protease inhibitors.

Serine protease inhibitor Kazal-type 6 (SPINK6) is a protein encoded by the SPINK6 gene in humans. It is a potent inhibitor of epidermal proteases involved in maintaining skin homeostasis, including KLK5, KLK7 and KLK14. SPINK6 is a member of a gene family cluster located on chromosome 5q33.1, which includes SPINK5 and SPINK9.

<span class="mw-page-title-main">LEKTI-2</span> Mammalian protein found in Homo sapiens

Lympho-epithelial Kazal-type related inhibitor 2 (LEKTI-2) is a protein encoded by the SPINK9 gene in humans. SPINK9 is a member of a gene family cluster located on chromosome 5q33.1, which includes SPINK5 and SPINK6. LEKTI-2 is an inhibitor of KLK5.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000133710 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000055561 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Magert HJ, Standker L, Kreutzmann P, Zucht HD, Reinecke M, Sommerhoff CP, Fritz H, Forssmann WG (Aug 1999). "LEKTI, a novel 15-domain type of human serine proteinase inhibitor". J Biol Chem. 274 (31): 21499–502. doi: 10.1074/jbc.274.31.21499 . PMID   10419450.
  6. 1 2 3 "Entrez Gene: SPINK5 serine peptidase inhibitor, Kazal type 5".
  7. 1 2 3 Furio L, Hovnanian A (November 2011). "When Activity Requires Breaking Up: LEKTI Proteolytic Activation Cascade for Specific Proteinase Inhibition". J Invest Dermatol. 131 (11): 2169–73. doi: 10.1038/jid.2011.295 . PMID   21997416.
  8. Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, Wagberg F, Brattsand M, Hachem JP, Leonardsson G, Hovnanian A (September 2007). "LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction". Mol. Biol. Cell. 18 (9): 3607–19. doi:10.1091/mbc.E07-02-0124. PMC   1951746 . PMID   17596512.
  9. Mitsudo K, Jayakumar A, Henderson Y, Frederick MJ, Kang Y, Wang M, El-Naggar AK, Clayman GL (April 2003). "Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis". Biochemistry. 42 (13): 3874–81. doi:10.1021/bi027029v. PMID   12667078.
  10. "SPINK5 serine peptidase inhibitor, Kazal type 5 [Homo sapiens (human)] - Gene - NCBI".
  11. Tartaglia-Polcini A, Bonnart C, Micheloni A, Cianfarani F, Andrè A, Zambruno G, Hovnanian A, D'Alessio M (February 2006). "SPINK5, the defective gene in netherton syndrome, encodes multiple LEKTI isoforms derived from alternative pre-mRNA processing". J Invest Dermatol. 126 (2): 315–24. doi: 10.1038/sj.jid.5700015 . PMID   16374478.

Further reading