Laguna Amarga

Last updated
Laguna Amarga
Relief Map of Argentina.jpg
Red triangle with thick white border.svg
Laguna Amarga
Highest point
Coordinates 27°32′33″S68°21′51″W / 27.54250°S 68.36417°W / -27.54250; -68.36417 GEOnet Names Server
Geography
Location Catamarca Province, Argentina
Geology
Age of rock Pliocene-Pleistocene
Mountain type Caldera
Volcanic arc/belt Central Volcanic Zone
Last eruption 3.0 ± 0.2 mya

Laguna Amarga is a caldera and associated ignimbrite in the Andes of northwestern Argentina.

Laguna Amarga is part of the southern Central Volcanic Zone and one among several Miocene-Pliocene-Pleistocene volcanic centres of this volcanic region. The formation of magma chambers and thus of large volcanic systems has apparently been influenced by tectonic changes. The Laguna Amarga caldera is associated with the Cordillera Claudio Gay faults together with the Laguna Escondida and Wheelwright calderas, all of which are between 6.5 and 4 mya old. [1] Laguna Amarga and Laguna Verde are sometimes associated with the Vallecito ignimbrite instead. [2] The formation of the Laguna Amarga volcanic centre was probably influenced by orogenic changes in the Andes which triggered the formation of fractures in the crust. [3]

The Laguna Amarga caldera has a diameter of 33 kilometres (21 mi) and is linked to the Laguna Escondida caldera. [1] It is the largest caldera in the area [4] and may be part of an eastward migrating volcanic complex. [5] Tephras erupted during its formation have been found hundreds of kilometres from Laguna Amarga. [6]

The 630 km3 (150 cu mi) Laguna Verde ignimbrite was erupted 4-3 mya ago and is associated with these two calderas. [1] Other dates are 4.5 ± 0.5 to 3.0 ± 0.2 mya. The ignimbrite covers an area of 86.46 km2 (33.38 sq mi), cropping out southwest of the Laguna Amarga ignimbrite. [7] The Laguna Verde ignimbrite ranges from dacite to rhyolite in composition, containing biotite, pumice, quartz and sanidine. [2] Hydrothermally altered rocks occur in the area. [8]

The Laguna Amarga ignimbrite was erupted 5.1 mya ago, [9] or 3.7-4.1 mya, and it has a volume of over 70 km3 (17 cu mi). [10] It extends north-northwest from Peinado volcano. The ignimbrite is somewhat welded and contains vesicular pumice, and bears some similarity with the Cyclops ignimbrite 50 km (31 mi) away. [11] Further, the Laguna Amarga ignimbrites like the Cerro Blanco and Galan ignimbrites are rich in sodium. [10] It covers a surface area of 611.02 km2 (235.92 sq mi), cropping out around the Laguna Amarga. Another ignimbrite, Los Colorados, is located at the edge of the Amarga caldera but its eruptive centre is unknown. [7] After its formation, lava flows from Peinado [5] and Cerro El Condor overran the floor of the caldera [12] and monogenetic volcanos developed both on the caldera floor and on its ignimbrite. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Falso Azufre</span> Mountain in Argentina

Falso Azufre is a complex volcano at the border of Argentina and Chile.

<span class="mw-page-title-main">Peinado</span> Mountain in Argentina

Peinado is a stratovolcano in Catamarca Province, Argentina. It consists of a volcanic cone with a summit crater, surrounded at its foot by lava flows erupted from flank vents. It began erupting about 100,000 years ago, with the last eruption about 36,800 years ago. Future eruptions are possible.

<span class="mw-page-title-main">Incahuasi</span> Mountain in Argentina

Incahuasi is a volcanic mountain in the Andes of South America. It lies on the border of the Catamarca Province of Argentina and the Atacama Region of Chile. Incahuasi has a summit elevation of 6,621 metres (21,722 ft) above sea level.

<span class="mw-page-title-main">Galán</span> Mountain in Argentina

Cerro Galán is a caldera in the Catamarca Province of Argentina. It is one of the largest exposed calderas in the world and forms part of the Central Volcanic Zone of the Andes, one of the three volcanic belts found in South America. One of several major caldera systems in the Central Volcanic Zone, the mountain is grouped into the Altiplano–Puna volcanic complex.

<span class="mw-page-title-main">Cordón de Puntas Negras</span> Mountain in Chile

Cordón de Puntas Negras is a 500 km2 (193 sq mi) volcanic chain located east of the Salar de Atacama in Chile's Antofagasta Region.

Aguas Calientes is a major Miocene caldera in Salta Province, Argentina. It is in the Central Volcanic Zone of the Andes, a zone of volcanism covering southern Peru, Bolivia, northwest Argentina and northern Chile. This zone contains stratovolcanoes and calderas.

<span class="mw-page-title-main">Altiplano–Puna volcanic complex</span>

The Altiplano–Puna volcanic complex, also known as APVC, is a complex of volcanic systems in the Puna of the Andes. It is located in the Altiplano area, a highland bounded by the Bolivian Cordillera Real in the east and by the main chain of the Andes, the Western Cordillera, in the west. It results from the subduction of the Nazca Plate beneath the South American Plate. Melts caused by subduction have generated the volcanoes of the Andean Volcanic Belt including the APVC. The volcanic province is located between 21° S–24° S latitude. The APVC spans the countries of Argentina, Bolivia and Chile.

Cerro Guacha is a Miocene caldera in southwestern Bolivia's Sur Lípez Province. Part of the volcanic system of the Andes, it is considered to be part of the Central Volcanic Zone (CVZ), one of the three volcanic arcs of the Andes, and its associated Altiplano-Puna volcanic complex (APVC). A number of volcanic calderas occur within the latter.

<span class="mw-page-title-main">Cerro Panizos</span>

Panizos is a Late Miocene caldera in the Potosí Department of Bolivia and the Jujuy Province of Argentina. It is part of the Altiplano-Puna volcanic complex of the Central Volcanic Zone in the Andes. 50 volcanoes active in recent times are found in the Central Volcanic Zone, and several major caldera complexes are situated in the area. The caldera is located in a difficult-to-access part of the Andes.

<span class="mw-page-title-main">Incapillo</span> Pleistocene caldera in Argentina

Incapillo is a Pleistocene caldera in the La Rioja province of Argentina. It is considered the southernmost volcanic centre in the Central Volcanic Zone (CVZ) of the Andes with Pleistocene activity. Incapillo is one of several ignimbritic or calderic systems that, along with 44 active stratovolcanoes, are part of the CVZ.

Jotabeche is a Miocene-Pliocene caldera in the Atacama Region of Chile. It is part of the volcanic Andes, more specifically of the extreme southern end of the Central Volcanic Zone (CVZ). This sector of the Andean Volcanic Belt contains about 44 volcanic centres and numerous more minor volcanic systems, as well as some caldera and ignimbrite systems. Jotabeche is located in a now inactive segment of the CVZ, the Maricunga Belt.

Chato Aislado is a volcano in Chile.

Luingo is a caldera in the Andes of Argentina. It is located southeast of the Galan caldera. The caldera is not recognizable from satellite images and is associated with the Pucarilla-Cerro Tipillas volcanic complex.

Negro de Chorrillos is a volcano in the Andes.

Pairique volcanic complex is a volcanic complex in the Jujuy Province, Argentina.

Wheelwright caldera is a caldera in Chile. It is variously described as being between 11 kilometres (6.8 mi) and 22 kilometres (14 mi) wide and lies in the Central Volcanic Zone of the Andes. A lake lies within the caldera, which is among the largest of the Central Andes. The caldera lies in the region of Ojos del Salado, the world's tallest volcano.

Vilama is a Miocene caldera in Bolivia and Argentina. Straddling the border between the two countries, it is part of the Central Volcanic Zone, one of the four volcanic belts in the Andes. Vilama is remote and forms part of the Altiplano-Puna volcanic complex, a province of large calderas and associated ignimbrites that were active since about 8 million years ago, sometimes in the form of supervolcanoes.

Los Frailes is an ignimbrite plateau in Bolivia, between the city of Potosi and the Lake Poopo. It belongs to a group of ignimbrites that exist in the Central Andes and which includes the Altiplano–Puna volcanic complex. The plateau covers a surface of 7,500 square kilometres (2,900 sq mi)–8,500 square kilometres (3,300 sq mi) with about 2,000 cubic kilometres (480 cu mi) of ignimbrite.

Coranzulí is a Miocene caldera in northern Argentina's Jujuy Province. Part of the Argentine Andes' volcanic segment, it is considered a member of the Central Volcanic Zone (CVZ). At the heart of the CVZ lies the Altiplano-Puna volcanic complex, a group of volcanoes of which Coranzulí is a part: the complex has produced large ignimbrite sheets with a combined volume approaching 15,000 cubic kilometres (3,600 cu mi).

References

  1. 1 2 3 Naranjo, José Antonio; Villa, Víctor; Ramírez, Cristián; Pérez de Arce, Carlos. "Oligo - Holocene evolution of the southern part of the Central Andes: volcanism and tectonic" (PDF). biblioserver.sernageomin.cl. SERNAGEOMIN. Archived from the original (PDF) on 6 April 2017. Retrieved 21 June 2016.
  2. 1 2 Kay, Suzanne Mahlburg; Coira, Beatriz; Mpodozis, Constantino (2008). "Field trip guide: Neogene evolution of the central Andean Puna plateau and southern Central Volcanic Zone". GSA Field Guide 13: Field Trip Guides to the Backbone of the Americas in the Southern and Central Andes: Ridge Collision, Shallow Subduction, and Plateau Uplift. Vol. 13. pp. 117–181. doi:10.1130/2008.0013(05). ISBN   978-0-8137-0013-7.
  3. Seggiaro, R.E.; Hongn, F.D. (1999). "Influencia tectónica en el volcanismo Cenozoico del Noroeste argentino". Acta Geológica Hispánica. 34 (2–3): 228–242. Retrieved 21 June 2016.
  4. 1 2 Grosse, Pablo; Ochi Ramacciotti, María Luisa; Escalante Fochi, Florencia; Guzmán, Silvina; Orihashi, Yuji; Sumino, Hirochika (1 September 2020). "Geomorphology, morphometry, spatial distribution and ages of mafic monogenetic volcanoes of the Peinado and Incahuasi fields, southernmost Central Volcanic Zone of the Andes". Journal of Volcanology and Geothermal Research. 401: 106966. Bibcode:2020JVGR..40106966G. doi:10.1016/j.jvolgeores.2020.106966. ISSN   0377-0273. S2CID   225294953.
  5. 1 2 Grosse, Pablo; Guzmán, Silvina R.; Nauret, François; Orihashi, Yuji; Sumino, Hirochika (May 2022). "Central vs. lateral growth and evolution of the < 100 ka Peinado composite volcano, southern Central Volcanic Zone of the Andes". Journal of Volcanology and Geothermal Research. 425: 107532. Bibcode:2022JVGR..42507532G. doi:10.1016/j.jvolgeores.2022.107532. S2CID   247416244.
  6. Coira, Beatriz; Galli, Claudia I.; Mahlburg-Kay, Suzanne; Stockli, Daniel F.; Flores, Patrocinio; Eveling, Emilio; Coira, Beatriz; Galli, Claudia I.; Mahlburg-Kay, Suzanne; Stockli, Daniel F.; Flores, Patrocinio; Eveling, Emilio (May 2022). "Pliocene-Pleistocene ash-fall tuff deposits in the intermountain Humahuaca and Casa Grande basins, northwestern Argentina: tracers in chronostratigraphic reconstructions and key to identify their volcanic sources". Andean Geology. 49 (2): 208–237. doi: 10.5027/andgeov49n2-3377 . hdl: 11336/196915 . ISSN   0718-7106. S2CID   247305850.
  7. 1 2 Guzmán, Silvina; Grosse, Pablo; Montero-López, Carolina; Hongn, Fernando; Pilger, Rex; Petrinovic, Ivan; Seggiaro, Raúl; Aramayo, Alejandro (December 2014). "Spatial–temporal distribution of explosive volcanism in the 25–28°S segment of the Andean Central Volcanic Zone". Tectonophysics. 636: 170–189. Bibcode:2014Tectp.636..170G. doi:10.1016/j.tecto.2014.08.013.
  8. Guevara, L.; Apaza, F. D.; Favetto, A.; Seggiaro, R.; Pomposiello, C.; Conde Serra, A. (1 July 2021). "Geoelectrical characterization of Socompa lagoon area in the Andean Central Volcanic Zone from 3-D audiomagnetotelluric inversion". Journal of Volcanology and Geothermal Research. 415: 107246. Bibcode:2021JVGR..41507246G. doi:10.1016/j.jvolgeores.2021.107246. ISSN   0377-0273. S2CID   233608193.
  9. Schnurr, W.B.W.; Trumbull, R.B.; Clavero, J.; Hahne, K.; Siebel, W.; Gardeweg, M. (September 2007). "Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: Geochemistry and magma genesis of ignimbrites from 25 to 27 °S, 67 to 72 °W". Journal of Volcanology and Geothermal Research. 166 (1): 17–46. Bibcode:2007JVGR..166...17S. doi:10.1016/j.jvolgeores.2007.06.005.
  10. 1 2 Kay, Suzanne Mahlburg; Coira, Beatriz L.; Caffe, Pablo J.; Chen, Chang-Hwa (December 2010). "Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites". Journal of Volcanology and Geothermal Research. 198 (1–2): 81–111. Bibcode:2010JVGR..198...81K. doi:10.1016/j.jvolgeores.2010.08.013.
  11. Siebel, Wolfgang; Schnurr, Wolfgang B.W.; Hahne, Knut; Kraemer, Bernhard; Trumbull, Robert B.; van den Bogaard, Paul; Emmermann, Rolf (January 2001). "Geochemistry and isotope systematics of small- to medium-volume Neogene–Quaternary ignimbrites in the southern central Andes: evidence for derivation from andesitic magma sources". Chemical Geology. 171 (3–4): 213–237. Bibcode:2001ChGeo.171..213S. doi:10.1016/S0009-2541(00)00249-7.
  12. Grosse, Pablo; Orihashi, Yuji; Guzmán, Silvina R.; Sumino, Hirochika; Nagao, Keisuke (4 April 2018). "Eruptive history of Incahuasi, Falso Azufre and El Cóndor Quaternary composite volcanoes, southern Central Andes". Bulletin of Volcanology. 80 (5): 44. Bibcode:2018BVol...80...44G. doi:10.1007/s00445-018-1221-5. ISSN   1432-0819. S2CID   134869390.