Landau levels

Last updated

In quantum mechanics, the energies of cyclotron orbits of charged particles in a uniform magnetic field are quantized to discrete values, thus known as Landau levels. These levels are degenerate, with the number of electrons per level directly proportional to the strength of the applied magnetic field. It is named after the Soviet physicist Lev Landau. [1]

Contents

Landau quantization contributes towards magnetic susceptibility of metals, known as Landau diamagnetism. Under strong magnetic fields, Landau quantization leads to oscillations in electronic properties of materials as a function of the applied magnetic field known as the De Haas–Van Alphen and Shubnikov–de Haas effects.

Landau quantization is a key ingredient in explanation of the integer quantum Hall effect.

Derivation

Diagram of a cyclotron orbit of a particle with speed v, which is the classical trajectory of a charged particle (here positive charge) under a uniform magnetic field B. The Landau quantization refers to a quantum charged particle under a uniform magnetic field. Cyclotron Orbit.jpg
Diagram of a cyclotron orbit of a particle with speed v, which is the classical trajectory of a charged particle (here positive charge) under a uniform magnetic field B. The Landau quantization refers to a quantum charged particle under a uniform magnetic field.

Consider a system of non-interacting particles with charge q and spin S confined to an area A = LxLy in the x-y plane. Apply a uniform magnetic field along the z-axis. In SI units, the Hamiltonian of this system (here, the effects of spin are neglected) is Here, is the canonical momentum operator and is the operator for the electromagnetic vector potential (in position space ).

The vector potential is related to the magnetic field by

There is some gauge freedom in the choice of vector potential for a given magnetic field. The Hamiltonian is gauge invariant, which means that adding the gradient of a scalar field to A changes the overall phase of the wave function by an amount corresponding to the scalar field. But physical properties are not influenced by the specific choice of gauge.

In the Landau gauge

From the possible solutions for A, a gauge fixing introduced by Lev Landau is often used for charged particles in a constant magnetic field. [2]

When then is a possible solution [3] in the Landau gauge.

In this gauge, the Hamiltonian is The operator commutes with this Hamiltonian, since the operator is absent for this choice of gauge. Thus the operator can be replaced by its eigenvalue . Since does not appear in the Hamiltonian and only the z-momentum appears in the kinetic energy, this motion along the z-direction is a free motion.

The Hamiltonian can also be written more simply by noting that the cyclotron frequency is , giving This is exactly the Hamiltonian for the quantum harmonic oscillator, except with the minimum of the potential shifted in coordinate space by .

To find the energies, note that translating the harmonic oscillator potential does not affect the energies. The energies of this system are thus identical to those of the standard quantum harmonic oscillator, [4] The energy does not depend on the quantum number , so there will be a finite number of degeneracies (If the particle is placed in an unconfined space, this degeneracy will correspond to a continuous sequence of ). The value of is continuous if the particle is unconfined in the z-direction and discrete if the particle is bounded in the z-direction also. Each set of wave functions with the same value of is called a Landau level.

For the wave functions, recall that commutes with the Hamiltonian. Then the wave function factors into a product of momentum eigenstates in the direction and harmonic oscillator eigenstates shifted by an amount in the direction: where . In sum, the state of the electron is characterized by the quantum numbers, , and .

In the symmetric gauge

The derivation treated x and y as asymmetric. However, by the symmetry of the system, there is no physical quantity which distinguishes these coordinates. The same result could have been obtained with an appropriate interchange of x and y.

A more adequate choice of gauge, is the symmetric gauge, which refers to the choice

In terms of dimensionless lengths and energies, the Hamiltonian can be expressed as

The correct units can be restored by introducing factors of and .

Consider operators

These operators follow certain commutation relations

In terms of above operators the Hamiltonian can be written as where we reintroduced the units back.

The Landau level index is the eigenvalue of the operator .

The application of increases by one unit while preserving , whereas application simultaneously increase and decreases by one unit. The analogy to quantum harmonic oscillator provides solutions where and

One may verify that the above states correspond to choosing wavefunctions proportional to where .

In particular, the lowest Landau level consists of arbitrary analytic functions multiplying a Gaussian, .

Degeneracy of the Landau levels

In the Landau gauge

The effects of Landau levels may only be observed when the mean thermal energy kT is smaller than the energy level separation, , meaning low temperatures and strong magnetic fields.

Each Landau level is degenerate because of the second quantum number , which can take the values where is an integer. The allowed values of are further restricted by the condition that the center of force of the oscillator, , must physically lie within the system, . This gives the following range for ,

For particles with charge , the upper bound on can be simply written as a ratio of fluxes, where is the fundamental magnetic flux quantum and is the flux through the system (with area ).

Thus, for particles with spin , the maximum number of particles per Landau level is which for electrons (where and ) gives , two available states for each flux quantum that penetrates the system.

The above gives only a rough idea of the effects of finite-size geometry. Strictly speaking, using the standard solution of the harmonic oscillator is only valid for systems unbounded in the -direction (infinite strips). If the size is finite, boundary conditions in that direction give rise to non-standard quantization conditions on the magnetic field, involving (in principle) both solutions to the Hermite equation. The filling of these levels with many electrons is still [5] an active area of research.

In general, Landau levels are observed in electronic systems. As the magnetic field is increased, more and more electrons can fit into a given Landau level. The occupation of the highest Landau level ranges from completely full to entirely empty, leading to oscillations in various electronic properties (see De Haas–Van Alphen effect and Shubnikov–de Haas effect).

If Zeeman splitting is included, each Landau level splits into a pair, one for spin up electrons and the other for spin down electrons. Then the occupation of each spin Landau level is just the ratio of fluxes . Zeeman splitting has a significant effect on the Landau levels because their energy scales are the same, . However, the Fermi energy and ground state energy stay roughly the same in a system with many filled levels, since pairs of split energy levels cancel each other out when summed.

Moreover, the above derivation in the Landau gauge assumed an electron confined in the -direction, which is a relevant experimental situation — found in two-dimensional electron gases, for instance. Still, this assumption is not essential for the results. If electrons are free to move along the -direction, the wave function acquires an additional multiplicative term ; the energy corresponding to this free motion, , is added to the discussed. This term then fills in the separation in energy of the different Landau levels, blurring the effect of the quantization. Nevertheless, the motion in the --plane, perpendicular to the magnetic field, is still quantized.

In the symmetric gauge

Each Landau level has degenerate orbitals labeled by the quantum numbers in symmetric gauge. The degeneracy per unit area is the same in each Landau level.

The z component of angular momentum is

Exploiting the property we chose eigenfunctions which diagonalize and , The eigenvalue of is denoted by , where it is clear that in the th Landau level. However, it may be arbitrarily large, which is necessary to obtain the infinite degeneracy (or finite degeneracy per unit area) exhibited by the system.

Relativistic case

Landau levels in graphene. Charge carriers in graphene behave as relativistic massless Dirac particles. Graphene - Geim - Landau levels.svg
Landau levels in graphene. Charge carriers in graphene behave as relativistic massless Dirac particles.

An electron following Dirac equation under a constant magnetic field, can be analytically solved. [6] [7] The energies are given by

where c is the speed of light, the sign depends on the particle-antiparticle component and ν is a non-negative integer. Due to spin, all levels are degenerate except for the ground state at ν = 0.

The massless 2D case can be simulated in single-layer materials like graphene near the Dirac cones, where the eigenergies are given by [8] where the speed of light has to be replaced with the Fermi speed vF of the material and the minus sign corresponds to electron holes.

Magnetic susceptibility of a Fermi gas

The Fermi gas (an ensemble of non-interacting fermions) is part of the basis for understanding of the thermodynamic properties of metals. In 1930 Landau derived an estimate for the magnetic susceptibility of a Fermi gas, known as Landau susceptibility, which is constant for small magnetic fields. Landau also noticed that the susceptibility oscillates with high frequency for large magnetic fields, [9] this physical phenomenon is known as the De Haas–Van Alphen effect.

Two-dimensional lattice

The tight binding energy spectrum of charged particles in a two dimensional infinite lattice is known to be self-similar and fractal, as demonstrated in Hofstadter's butterfly. For an integer ratio of the magnetic flux quantum and the magnetic flux through a lattice cell, one recovers the Landau levels for large integers. [10]

Integer quantum Hall effect

The energy spectrum of the semiconductor in a strong magnetic field forms Landau levels that can be labeled by integer indices. In addition, the Hall resistivity also exhibits discrete levels labeled by an integer ν. The fact that these two quantities are related can be shown in different ways, but most easily can be seen from Drude model: the Hall conductivity depends on the electron density n as

Since the resistivity plateau is given by

the required density is

which is exactly the density required to fill the Landau level. The gap between different Landau levels along with large degeneracy of each level renders the resistivity quantized.

See also

Related Research Articles

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values

The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

<span class="mw-page-title-main">Rabi cycle</span> Quantum mechanical phenomenon

In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.

The adiabatic theorem is a concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928), was stated as follows:

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847646917(29)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

In quantum mechanics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two effects: the apparent magnetic field seen from the electron perspective due to special relativity and the magnetic moment of the electron associated with its intrinsic spin due to quantum mechanics.

<span class="mw-page-title-main">Degenerate energy levels</span> Energy level of a quantum system that corresponds to two or more different measurable states

In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy of the level. It is represented mathematically by the Hamiltonian for the system having more than one linearly independent eigenstate with the same energy eigenvalue. When this is the case, energy alone is not enough to characterize what state the system is in, and other quantum numbers are needed to characterize the exact state when distinction is desired. In classical mechanics, this can be understood in terms of different possible trajectories corresponding to the same energy.

In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Being an observable, its eigenfunctions represent the distinguishable physical states of a system's angular momentum, and the corresponding eigenvalues the observable experimental values. When applied to a mathematical representation of the state of a system, yields the same state multiplied by its angular momentum value if the state is an eigenstate. In both classical and quantum mechanical systems, angular momentum is one of the three fundamental properties of motion.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.

Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

<span class="mw-page-title-main">Helium atom</span> Atom of helium

A helium atom is an atom of the chemical element helium. Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with two neutrons, depending on the isotope, held together by the strong force. Unlike for hydrogen, a closed-form solution to the Schrödinger equation for the helium atom has not been found. However, various approximations, such as the Hartree–Fock method, can be used to estimate the ground state energy and wavefunction of the atom. Historically, the first such helium spectrum calculation was done by Albrecht Unsöld in 1927. Its success was considered to be one of the earliest signs of validity of Schrödinger's wave mechanics.

An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:

Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

In quantum mechanics, magnetic resonance is a resonant effect that can appear when a magnetic dipole is exposed to a static magnetic field and perturbed with another, oscillating electromagnetic field. Due to the static field, the dipole can assume a number of discrete energy eigenstates, depending on the value of its angular momentum (azimuthal) quantum number. The oscillating field can then make the dipole transit between its energy states with a certain probability and at a certain rate. The overall transition probability will depend on the field's frequency and the rate will depend on its amplitude. When the frequency of that field leads to the maximum possible transition probability between two states, a magnetic resonance has been achieved. In that case, the energy of the photons composing the oscillating field matches the energy difference between said states. If the dipole is tickled with a field oscillating far from resonance, it is unlikely to transition. That is analogous to other resonant effects, such as with the forced harmonic oscillator. The periodic transition between the different states is called Rabi cycle and the rate at which that happens is called Rabi frequency. The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.

References

  1. Landau, L. (1930). "Diamagnetismus der Metalle" [Diamagnetism of Metals]. Zeitschrift für Physik (in German). 64 (9–10). Springer Science and Business Media LLC: 629–637. Bibcode:1930ZPhy...64..629L. doi:10.1007/bf01397213. ISSN   1434-6001. S2CID   123206025.
  2. "Charge in Magnetic Field" (PDF). courses.physics.illinois.edu. Retrieved 11 March 2023.
  3. An equally correct solution in the Landau gauge would be: .
  4. Landau, L. D.; Lifshitz, E. M. (1977). Quantum mechanics : non-relativistic theory (3rd ed.). Amsterdam: Butterworth Heinemann. pp. 424–426. ISBN   978-0-7506-3539-4. OCLC   846962062.
  5. Mikhailov, S. A. (2001). "A new approach to the ground state of quantum Hall systems. Basic principles". Physica B: Condensed Matter. 299 (1–2): 6–31. arXiv: cond-mat/0008227 . Bibcode:2001PhyB..299....6M. doi:10.1016/S0921-4526(00)00769-9. S2CID   118500817.
  6. Rabi, I. I. (1928). "Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie". Zeitschrift für Physik (in German). 49 (7–8): 507–511. Bibcode:1928ZPhy...49..507R. doi:10.1007/BF01333634. ISSN   1434-6001. S2CID   121121095.
  7. Berestetskii, V. B.; Pitaevskii, L. P.; Lifshitz, E. M. (2012-12-02). Quantum Electrodynamics: Volume 4. Elsevier. ISBN   978-0-08-050346-2.
  8. Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin (2017). "Landau quantization of Dirac fermions in graphene and its multilayers". Frontiers of Physics. 12 (4): 127208. arXiv: 1703.04241 . Bibcode:2017FrPhy..12l7208Y. doi: 10.1007/s11467-017-0655-0 . ISSN   2095-0462.
  9. Landau, L. D.; Lifshitz, E. M. (22 October 2013). Statistical Physics: Volume 5. Elsevier. p. 177. ISBN   978-0-08-057046-4.
  10. Analytis, James G.; Blundell, Stephen J.; Ardavan, Arzhang (May 2004). "Landau levels, molecular orbitals, and the Hofstadter butterfly in finite systems". American Journal of Physics. 72 (5): 613–618. Bibcode:2004AmJPh..72..613A. doi:10.1119/1.1615568. ISSN   0002-9505.

Further reading