Laurolactam

Last updated
Laurolactam
Laurolactam.png
Names
IUPAC name
Azacyclotridecan-2-one
Other names
Dodecalactam
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.012.204 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C12H23NO/c14-12-10-8-6-4-2-1-3-5-7-9-11-13-12/h1-11H2,(H,13,14)
    Key: JHWNWJKBPDFINM-UHFFFAOYSA-N
  • InChI=1/C12H23NO/c14-12-10-8-6-4-2-1-3-5-7-9-11-13-12/h1-11H2,(H,13,14)
    Key: JHWNWJKBPDFINM-UHFFFAOYAS
  • C1CCCCCC(=O)NCCCCC1
Properties
C12H23NO
Molar mass 197.322 g·mol−1
Appearancecolourless solid
Melting point 152.5 °C (306.5 °F; 425.6 K) [1]
Boiling point 314.9±10 °C
0.03 wt%
Hazards
Flash point 192 °C (378 °F; 465 K)
320 to 330 °C (608 to 626 °F; 593 to 603 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Laurolactam is an organic compound from the group of macrocyclic lactams. Laurolactam is mainly used as a monomer in engineering plastics, such as nylon-12 and copolyamides. [2]

Contents

Synthesis

Although a derivative of 12-aminododecanoic acid, it is made from cyclododecatriene. The triene is hydrogenated to the saturated alkane, cyclododecane. For the production of laurolactam, cyclododecane is oxidized with air or oxygen in the presence of boric acid and transition metal salts (e.g. cobalt(II) acetate), obtaining a mixture [3] of cyclododecanol and cyclododecanone. This mixture is quantitatively dehydrogenated on a copper contact catalyst to cyclododecanone and this reacted with hydroxylamine to cyclododecanone oxime. The oxime is rearranged to laurolactam in a Beckmann rearrangement in the presence of a strong acid. [4] [5] [6]

Formation of laurolactam Laurolactam formation 2.png
Formation of laurolactam

An alternative process is the photonitrosation of cyclododecane with nitrosyl chloride [3] in the presence of anhydrous hydrogen chloride. [7] The resulting cyclododecanone oxime is extracted with concentrated sulfuric acid and rearranged to laurolactam by heating to 160 °C. The overall yield (photonitrogenation + Beckmann rearrangement) is up to 93%. [2]

Properties

Laurolactam is a water-insoluble, crystalline solid; in technical quality usually beige colored and in pure state (99.9% purity) white. It is soluble in many organic solvents, e. g. 1,4-dioxane, benzene or cyclohexane. The purification process is carried out conventionally by multistage distillation under reduced pressure. [2] The combination of distillation and crystallization from solution or melt yields very pure laurolactam (> 99%). [8] The risk posed by laurolactam is considered to be low. [9]

Uses

Ring opening polymerization is used to polymerize the monomer to nylon-12. The reaction can be brought about with cationic or anionic initiators or with water. Cationic polymerization with acid is believed to involve the initial O-protonation. Nucleophilic attack by the monomer on the reactive protonated nitrogen, followed by successive ring-opening acylation of the primary amine results in the formation of the polyamide. [10] The ring-opening polymerization of the monomer laurinlactam initially proceeds upon addition of water in a pre-polymerization at about 300 °C under pressure to a prepolymer. This prepolymer is reacted in a subsequent polycondensation at ambient or reduced pressure and temperatures of about 250 °C to higher molecular weight polyamide 12 ( PA 12: -[NH-(CH2)11-CO]n-). [11]

Polyamid12.svg

As a comonomer, laurolactam is used together with ε-caprolactam for the preparation of copolyamide 6/12. [12]

Drug Use

ChemDrug Synthesis: Patent: MDL-12330A.svg
ChemDrug Synthesis: Patent:

Laurolactam is used in the synthesis of MDL-12330A [40297-09-4]. Although at first glance it appears as though Laurolactam is condensed with cypenamine, the authors stated that cis stereochemistry is chosen. The molecule is said to act as a Calcium Channel Blocker.

Related Research Articles

<span class="mw-page-title-main">Condensation polymer</span> Polymer produced via a condensation reaction

In polymer chemistry, condensation polymers are any kind of polymers whose process of polymerization involves a condensation reaction. Natural proteins as well as some common plastics such as nylon and PETE are formed in this way. Condensation polymers are formed by polycondensation, when the polymer is formed by condensation reactions between species of all degrees of polymerization, or by condensative chain polymerization, when the polymer is formed by sequential addition of monomers to an active site in a chain reaction. The main alternative forms of polymerization are chain polymerization and polyaddition, both of which give addition polymers.

In chemistry, a monomer is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization.

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Beckmann rearrangement</span> Chemical rearrangement

The Beckmann rearrangement, named after the German chemist Ernst Otto Beckmann (1853–1923), is a rearrangement of an oxime functional group to substituted amides. The rearrangement has also been successfully performed on haloimines and nitrones. Cyclic oximes and haloimines yield lactams.

<span class="mw-page-title-main">Oxime</span> Organic compounds of the form >C=N–OH

In organic chemistry, an oxime is an organic compound belonging to the imines, with the general formula RR’C=N−OH, where R is an organic side-chain and R' may be hydrogen, forming an aldoxime, or another organic group, forming a ketoxime. O-substituted oximes form a closely related family of compounds. Amidoximes are oximes of amides with general structure R1C(=NOH)NR2R3.

A polyamide is a polymer with repeating units linked by amide bonds.

<span class="mw-page-title-main">Caprolactam</span> Chemical compound

Caprolactam (CPL) is an organic compound with the formula (CH2)5C(O)NH. This colourless solid is a lactam (a cyclic amide) of caproic acid. Global demand for this compound is approximately five million tons per year, and the vast majority is used to make Nylon 6 filament, fiber, and plastics.

<span class="mw-page-title-main">Cyclohexanone</span> Chemical compound

Cyclohexanone is the organic compound with the formula (CH2)5CO. The molecule consists of six-carbon cyclic molecule with a ketone functional group. This colorless oily liquid has a sweet odor reminiscent of benzaldehyde. Over time, samples of cyclohexanone assume a pale yellow color. Cyclohexanone is slightly soluble in water and miscible with common organic solvents. Billions of kilograms are produced annually, mainly as a precursor to nylon.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

<span class="mw-page-title-main">Caprolactone</span> Chemical compound

ε-Caprolactone or simply caprolactone is a lactone possessing a seven-membered ring. Its name is derived from caproic acid. This colorless liquid is miscible with most organic solvents and water. It was once produced on a large scale as a precursor to caprolactam.

<span class="mw-page-title-main">Epichlorohydrin</span> Chemical compound

Epichlorohydrin is an organochlorine compound and an epoxide. Despite its name, it is not a halohydrin. It is a colorless liquid with a pungent, garlic-like odor, moderately soluble in water, but miscible with most polar organic solvents. It is a chiral molecule generally existing as a racemic mixture of right-handed and left-handed enantiomers. Epichlorohydrin is a highly reactive electrophilic compound and is used in the production of glycerol, plastics, epoxy glues and resins, epoxy diluents and elastomers.

Barrelene is a bicyclic organic compound with chemical formula C8H8 and systematic name bicyclo[2.2.2]octa-2,5,7-triene. First synthesized and described by Howard Zimmerman in 1960, the name derives from the resemblance to a barrel, with the staves being three ethylene units attached to two methine groups. It is the formal Diels–Alder adduct of benzene and acetylene. Due to its unusual molecular geometry, the compound is of considerable interest to theoretical chemists.

Synthetic resins are industrially produced resins, typically viscous substances that convert into rigid polymers by the process of curing. In order to undergo curing, resins typically contain reactive end groups, such as acrylates or epoxides. Some synthetic resins have properties similar to natural plant resins, but many do not.

<span class="mw-page-title-main">Nitrosyl chloride</span> Chemical compound

Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is commonly encountered as a component of aqua regia, a mixture of 3 parts concentrated hydrochloric acid and 1 part of concentrated nitric acid. It is a strong electrophile and oxidizing agent. It is sometimes called Tilden's reagent, after William A. Tilden, who was the first to produce it as a pure compound.

Solution polymerization is a method of industrial polymerization. In this procedure, a monomer is dissolved in a non-reactive solvent that contains a catalyst or initiator.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

Nylon 12 is a nylon polymer with the formula [(CH2)11C(O)NH]n. It is made from ω-aminolauric acid or laurolactam monomers that each have 12 carbons, hence the name ‘Nylon 12’. It is one of several nylon polymers.

11-Aminoundecanoic acid is an organic compound with the formula H2N(CH2)10CO2H. This white solid is classified as an amine and a fatty acid. 11-Aminoundecanoic acid is a precursor to Nylon-11.

<span class="mw-page-title-main">Tetramethylurea</span> Chemical compound

Tetramethylurea is the organic compound with the formula (Me2N)2CO. It is a substituted urea. This colorless liquid is used as an aprotic-polar solvent, especially for aromatic compounds and is used e. g. for Grignard reagents.

AdvanSix is an American chemical company that produces nylon 6 and related chemicals such as caprolactam and ammonium sulfate fertilizers. It operated as Honeywell's Resins and Chemicals division until 2016, when it was spun off as a separate company. The unit accounted for 3 percent of Honeywell's sales at the time. For 2019, revenue is estimated at $1.4 billion. The company traces its lineage to the H. W. Jayne Company, established 1884 in Frankford, Pennsylvania.

References

  1. Bradley, Jean-Claude; Williams, Antony; Lang, Andrew (2014): Jean-Claude Bradley Open Melting Point Dataset. figshare. doi:10.6084/m9.figshare.1031637
  2. 1 2 3 T. Schiffer, G. Oenbrink: Cyclododecanol, Cyclododecanone, and Laurolactam. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim 2002, doi : 10.1002/14356007.a08_201.
  3. 1 2 H.-J. Arpe: Industrielle Organische Chemie. 6., vollst. überarb. Aufl., Wiley-VCH Verlag, Weinheim, 2007, ISBN   978-3-527-31540-6.
  4. Douglass F. Taber, Patrick J. Straney (December 2010), [PDF "The Synthesis of Laurolactam from Cyclododecanone via a Beckmann Rearrangement"], Journal of Chemical Education (in German), vol. 87, no. 12, p. 1392, Bibcode:2010JChEd..87.1392T, doi:10.1021/ed100599q {{citation}}: Check |url= value (help)
  5. Patent US8309714: Process for producing laurolactam. invent1: J. Kugimoto et al., assign1: Ube Industries, Ltd., erteilt am 13. Nov. 2012.
  6. Y. Furuya et al.: Cyanuric Chloride as a Mild and Active Beckmann Rearrangement Catalyst. In: J.Am.Chem.Soc. 127, Nr. 32, 2005, S. 11240–11241, doi : 10.1021/ja053441x
  7. US 6197999,J. Ollivier, D. Drutel,issued 2001-03-06, assigned to Atofina
  8. US 8399658,A. Hengstermann et al.,"Method for isolation of laurolactam from a laurolactam synthesis process stream",issued 2013-03-19, assigned to Evonik Degussa GmbH
  9. "OECD: Screening Information Dataset (SIDS) Initial Assessment Report (SIAR)" (PDF).
  10. Stevens, M. P. Polymer Chemistry: An Introduction, Oxford University Press: New York, 1999.
  11. US 5362448,A. Kawakami et al.,"Continuous polymerization method of laurolactam and apparatus therefor",issued 1994-11-08, assigned to Ube Industries, Ltd.
  12. DE 3730504,E. De Jong et al.,"Copolyamides containing caprolactam and laurolactam, process for the preparation thereof and use thereof for heat-sealing textiles",issued 1989-03-16, assigned to Atochem Werke GmbH
  13. Castaer, J.; Hillier, K.; RMI-12,330A. Drugs Fut 1979, 4, 12, 893.
  14. Johann M. Grisar, Thomas R. Blohm, & Edward M. Roberts, U.S. patent 4,126,611 (to Richardson Vicks Inc).