Limbic-predominant age-related TDP-43 encephalopathy

Last updated
LATE neuropathologic changes (LATE-NC). A normal centenarian brain, cut in the coronal plane (top left) is compared to a brain with LATE-NC (top right). The hippocampi on both sides are atrophic (shrunken) in the brain with LATE-NC. The bottom 3 panels show photomicrographs of a hippocampus with LATE-NC, stained for phosphorylated TDP-43 protein (TDP-43). Insets show TDP-43 positive neuronal cytoplasmic inclusions (Inset A--in dentate granule cells) and wispy non-tapering cellular processes stained for TDP-43 protein (Inset B--in CA1). LATE fig.tif
LATE neuropathologic changes (LATE-NC). A normal centenarian brain, cut in the coronal plane (top left) is compared to a brain with LATE-NC (top right). The hippocampi on both sides are atrophic (shrunken) in the brain with LATE-NC. The bottom 3 panels show photomicrographs of a hippocampus with LATE-NC, stained for phosphorylated TDP-43 protein (TDP-43). Insets show TDP-43 positive neuronal cytoplasmic inclusions (Inset A--in dentate granule cells) and wispy non-tapering cellular processes stained for TDP-43 protein (Inset B--in CA1).

LATE is a term that describes a prevalent condition with impaired memory and thinking in advanced age, often culminating in the dementia clinical syndrome. [1] In other words, the symptoms of LATE are similar to those of Alzheimer's disease.  

The acronym LATE stands for Limbic-predominant Age-related TDP-43 Encephalopathy: “limbic” is related to the brain areas first involved, “age-related” and the name “LATE” itself refer to the onset of disease usually in persons aged 80 or older,  “TDP-43” indicates the aberrant mis-folded protein (or proteinopathy) deposits in the brain that characterize LATE, and “encephalopathy” means illness of brain.

At present LATE can only be diagnosed with certainty at autopsy. The terminology used to refer to the brain changes identified in autopsy-confirmed LATE is: LATE neuropathologic change (LATE-NC). The diagnosis of LATE-NC at autopsy requires detection of pathologic TDP-43 protein deposits in the brain, especially in the amygdala and hippocampus.

LATE is a very common condition. LATE typically affects persons older than 75 years of age (with some exceptions; please see below) and becomes increasingly prevalent every year in advanced old age. [1] This is in contrast to Alzheimer's disease pathology, which tends to level off and perhaps decrease in prevalence among persons beyond age 85 years. [1] Autopsy studies around the world indicate that LATE is present in the brains of about one-third of people over 85. [1] [2] LATE is often comorbid with (i.e., occurs in the same brain as) other pathologic changes that are associated with dementia, such as Alzheimer's disease and cerebrovascular disease(s). [3] [4]

LATE has a large impact on public health. Clinical-pathologic correlation studies have established that the presence of LATE-NC is associated with impairments in memory and thinking. [1] In older persons whose brains lack Alzheimer's disease-type amyloid plaques and neurofibrillary tangles, the presence of LATE-NC at autopsy is associated with a relatively slow cognitive decline (in comparison with Alzheimer's disease), mostly affecting the memory domain. [5] However, most people (~75%) beyond age 85 have some Alzheimer's disease-type pathology and in this common scenario the impact of LATE-NC is very important. [6] Approximately one-half of persons with Alzheimer's disease pathology also have LATE-NC. [7] [8] [9] In these persons, the presence of LATE-NC is associated with a swifter disease course and with more severe clinical (memory and thinking) impairment than when only Alzheimer's disease pathology is present. [10] [11] [12] [5] A common combination of brain pathologies—with Alzheimer's disease pathology, Lewy body pathology, and LATE-NC in the same brain—tends to affect younger individuals (often <75 yrs of age) and, on average, is associated with more aggressive (faster) cognitive deterioration. [4] [13] [10] With or without co-existing Alzheimer's disease pathology or other brain changes, persons with LATE-NC generally lack the clinical features of frontotemporal dementia (FTD). [14] [15]

For reasons that are presently unknown, the disease process of LATE-NC preferentially affects medial temporal lobe structures of the brain, particularly the amygdala and hippocampus. [16] In a significant proportion of persons with LATE-NC, there is atrophy, cell loss and astrogliosis in the hippocampus, diagnosable at autopsy (and somewhat less specifically via MRI during life) as hippocampal sclerosis. [17] Brains with LATE-NC and hippocampal sclerosis are relatively more affected clinically than those with LATE-NC alone. [18] The phenomenon of hippocampal sclerosis-linked dementia, as well as the link to TDP-43, were first described by Dr. Dennis Dickson and colleagues, [19] [17] and this clinical-pathologic entity was subsequently confirmed by many others. [20] [21] [22] [23] [24] However, brain changes diagnosable as "hippocampal sclerosis" is/are also seen in other diseases (such as epilepsy), and many LATE-NC brains lack full-blown hippocampal sclerosis, so, hippocampal sclerosis is neither a sensitive nor specific feature of LATE-NC. [1]

The major known risk factors for LATE-NC are genetic: variations in the TMEM106B, GRN, APOE, ABCC9, KCNMB2, and WWOX genes have been linked to altered risk for LATE-NC (and/or hippocampal sclerosis dementia). [1] [25] [26] [27] [28] [29] [30] [31]

There currently is no known cure or preventative strategy for LATE-NC.

The deleterious impact(s) of TDP-43 proteinopathy may influence the brain via a number of different mechanisms. In normal brains and other tissues, the TDP-43 protein helps to ensure proper functioning of genes in the cell; the misfolded TDP-43 may thus impair normal gene expression regulation (so in LATE-NC, there is a loss-of-normal-function), and, the aberrant TDP-43 protein in LATE-NC may induce toxic gains of function also. [32] [33]

TDP-43 proteinopathy (a disease-associated phenomenon discovered by Dr. Manuela Neumann and colleagues at UPENN in the Drs John Trojanowski/Virginia Lee CNDR Lab [34] ) is also implicated in frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and other diseases. [35] [36] [34]

Related Research Articles

Lewy body Spherical inclusion commonly found in damaged neurons

Lewy bodies are the inclusion bodies – abnormal aggregations of protein – that develop inside nerve cells affected by Parkinson's disease (PD), the Lewy body dementias, and some other disorders. They are also seen in cases of multiple system atrophy, particularly the parkinsonian variant (MSA-P).

Frontotemporal dementia Types of dementia involving the frontal or temporal lobes

Frontotemporal dementia (FTD), or frontotemporal degeneration disease, or frontotemporal neurocognitive disorder, encompasses several types of dementia involving the progressive degeneration of frontal and temporal lobes. FTDs broadly present as behavioral or language disorders with gradual onsets. The three main subtypes or variant syndromes are a behavioral variant (bvFTD) previously known as Pick's disease, and two variants of primary progressive aphasia – semantic variant (svPPA), and nonfluent variant (nfvPPA). Two rare distinct subtypes of FTD are neuronal intermediate filament inclusion disease (NIFID), and basophilic inclusion body disease. Other related disorders include corticobasal syndrome and FTD with amyotrophic lateral sclerosis (ALS) FTD-ALS also called FTD-MND.

Progressive supranuclear palsy Medical condition

Progressive supranuclear palsy (PSP) is a late-onset degenerative disease involving the gradual deterioration and death of specific volumes of the brain. The condition leads to symptoms including loss of balance, slowing of movement, difficulty moving the eyes, and cognitive impairment. PSP may be mistaken for other neurodegenerative diseases such as Parkinson's, frontotemporal dementia and Alzheimer's. The cause of the condition is uncertain, but involves accumulation of tau protein within the brain. Medications such as levodopa and amantadine may be useful in some cases.

Amyloid plaques Extracellular deposits of the amyloid beta protein

Amyloid plaques are extracellular deposits of the amyloid beta (Aβ) protein mainly in the grey matter of the brain. Degenerative neuronal elements and an abundance of microglia and astrocytes can be associated with amyloid plaques. Some plaques occur in the brain as a result of senescence (aging), but large numbers of plaques and neurofibrillary tangles are characteristic features of Alzheimer's disease. Abnormal neurites in amyloid plaques are tortuous, often swollen axons and dendrites. The neurites contain a variety of organelles and cellular debris, and many of them include characteristic paired helical filaments, the ultrastructural component of neurofibrillary tangles. The plaques are highly variable in shape and size; in tissue sections immunostained for Aβ, they comprise a log-normal size distribution curve with an average plaque area of 400-450 square micrometers (µm²). The smallest plaques, which often consist of diffuse deposits of Aβ, are particularly numerous. The apparent size of plaques is influenced by the type of stain used to detect them, and by the plane through which they are sectioned for analysis under the microscope. Plaques form when Aβ misfolds and aggregates into oligomers and longer polymers, the latter of which are characteristic of amyloid. Misfolded and aggregated Aβ is thought to be neurotoxic, especially in its oligomeric state.

Frontotemporal lobar degeneration Medical condition

Frontotemporal lobar degeneration (FTLD) is a pathological process that occurs in frontotemporal dementia. It is characterized by atrophy in the frontal lobe and temporal lobe of the brain, with sparing of the parietal and occipital lobes.

Semantic dementia (SD), also known as semantic variant primary progressive aphasia (svPPA), is a progressive neurodegenerative disorder characterized by loss of semantic memory in both the verbal and non-verbal domains. However, the most common presenting symptoms are in the verbal domain. Semantic dementia is a disorder of semantic memory that causes patients to lose the ability to match words or images to their meanings. However, it is fairly rare for patients with semantic dementia to develop category specific impairments, though there have been documented cases of it occurring. Typically, a more generalized semantic impairment results from dimmed semantic representations in the brain.

Neurofibrillary tangle Aggregates of tau protein known as a biomarker of Alzheimers disease

Neurofibrillary tangles (NFTs) are aggregates of hyperphosphorylated tau protein that are most commonly known as a primary biomarker of Alzheimer's disease. Their presence is also found in numerous other diseases known as tauopathies. Little is known about their exact relationship to the different pathologies.

Hippocampal sclerosis Medical condition

Hippocampal sclerosis (HS) or mesial temporal sclerosis (MTS) is a neuropathological condition with severe neuronal cell loss and gliosis in the hippocampus, specifically in the CA-1 and subiculum of the hippocampus. It was first described in 1880 by Wilhelm Sommer. Hippocampal sclerosis is a frequent pathologic finding in community-based dementia. Hippocampal sclerosis can be detected with autopsy or MRI. In MRI, a decrease in signal is observed at T1 and an increase in signal at T2. Positron emission tomography is also used as an aid for diagnosis. In PET examination, glucose uptake is lower than in the normal part. The reason for this is that the sclerotic part works at a lower level than the normal part and needs less energy. Individuals with hippocampal sclerosis have similar initial symptoms and rates of dementia progression to those with Alzheimer's disease (AD) and therefore are frequently misclassified as having Alzheimer's Disease. But clinical and pathologic findings suggest that hippocampal sclerosis has characteristics of a progressive disorder although the underlying cause remains elusive. A diagnosis of hippocampal sclerosis has a significant effect on the life of patients because of the notable mortality, morbidity and social impact related to epilepsy, as well as side effects associated with antiepileptic treatments. Findings indicate that there is a strong genetic connection in the development of mesial temporal sclerosis. Mesial temporal sclerosis used to be most commonly found as a single lesion in the brains of chronic epileptics who died a natural death which was estimated to be developed as a result of continued febrile convulsions.

Tauopathy Medical condition

Tauopathy belongs to a class of neurodegenerative diseases involving the aggregation of tau protein into neurofibrillary or gliofibrillary tangles in the human brain. Tangles are formed by hyperphosphorylation of the microtubule protein known as tau, causing the protein to dissociate from microtubules and form insoluble aggregates. The mechanism of tangle formation is not well understood, and whether tangles are a primary cause of Alzheimer's disease or play a peripheral role is unknown.

Cognitive reserve is the mind's and brain's resistance to damage of the brain. The mind's resilience is evaluated behaviorally, whereas the neuropathological damage is evaluated histologically, although damage may be estimated using blood-based markers and imaging methods. There are two models that can be used when exploring the concept of "reserve": brain reserve and cognitive reserve. These terms, albeit often used interchangeably in the literature, provide a useful way of discussing the models. Using a computer analogy brain reserve can be seen as hardware and cognitive reserve as software. All these factors are currently believed to contribute to global reserve. Cognitive reserve is commonly used to refer to both brain and cognitive reserves in the literature.

Chronic traumatic encephalopathy Neurodegenerative disease caused by head injury

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease linked to repeated trauma to the head. The encephalopathy symptoms can include behavioral problems, mood problems, and problems with thinking. The disease often gets worse over time and can result in dementia. It is unclear if the risk of suicide is altered.

Proteinopathy Medical condition

In medicine, proteinopathy, or proteopathy, protein conformational disorder, or protein misfolding disease refers to a class of diseases in which certain proteins become structurally abnormal, and thereby disrupt the function of cells, tissues and organs of the body. Often the proteins fail to fold into their normal configuration; in this misfolded state, the proteins can become toxic in some way or they can lose their normal function. The proteinopathies include such diseases as Creutzfeldt–Jakob disease and other prion diseases, Alzheimer's disease, Parkinson's disease, amyloidosis, multiple system atrophy, and a wide range of other disorders. The term proteopathy was first proposed in 2000 by Lary Walker and Harry LeVine.

TAR DNA-binding protein 43

TAR DNA-binding protein 43, is a protein that in humans is encoded by the TARDBP gene.

Heiko Braak German anatomist

Heiko Braak is a German anatomist. Braak was born in Kiel, Schleswig-Holstein, and studied medicine at the universities of Hamburg, Berlin, and Kiel. He was Professor at the Institute of Clinical Neuroanatomy, Johann Wolfgang Goethe-University, Frankfurt am Main. Currently he is based at the 'Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Germany.

Alzheimer type II astrocyte Suspected pathological cell type in the brain

The Alzheimer type II astrocyte is thought to be a pathological type of cell in the brain; however, its exact pathology remains unknown. Like other astrocytes, it is a non-neuronal glial cell. It's mainly seen in diseases that cause increased levels of ammonia (hyperammonemia), such as chronic liver disease and Wilson's disease.

Alzheimer's Disease Neuroimaging Initiative (ADNI) is a multisite study that aims to improve clinical trials for the prevention and treatment of Alzheimer's disease (AD). This cooperative study combines expertise and funding from the private and public sector to study subjects with AD, as well as those who may develop AD and controls with no signs of cognitive impairment. Researchers at 63 sites in the US and Canada track the progression of AD in the human brain with neuroimaging, biochemical, and genetic biological markers. This knowledge helps to find better clinical trials for the prevention and treatment of AD. ADNI has made a global impact, firstly by developing a set of standardized protocols to allow the comparison of results from multiple centers, and secondly by its data-sharing policy which makes available all at the data without embargo to qualified researchers worldwide. To date, over 1000 scientific publications have used ADNI data. A number of other initiatives related to AD and other diseases have been designed and implemented using ADNI as a model. ADNI has been running since 2004 and is currently funded until 2021.

Synucleinopathy Medical condition

Synucleinopathies are neurodegenerative diseases characterised by the abnormal accumulation of aggregates of alpha-synuclein protein in neurons, nerve fibres or glial cells. There are three main types of synucleinopathy: Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Other rare disorders, such as various neuroaxonal dystrophies, also have α-synuclein pathologies. Additionally, autopsy studies have shown that around 6% of sporadic Alzheimer's Disease exhibit α-synuclein positive Lewy pathology, and are sub-classed as Alzheimer's Disease with Amygdalar Restricted Lewy Bodies (AD/ALB).

Primary age-related tauopathy (PART) is a neuropathological designation introduced in 2014 to describe the neurofibrillary tangles (NFT) that are commonly observed in the brains of normally aged and cognitively impaired individuals that can occur independently of the amyloid plaques of Alzheimer's disease (AD). The term and diagnostic criteria for PART were developed by a large group of neuropathologists, spearheaded by Drs. John F. Crary and Peter T. Nelson. Despite some controversy, the term PART has been widely adopted, with the consensus criteria cited over 600 times according to Google Scholar.

The neuroscience of aging is the study of the changes in the nervous system that occur with ageing. Aging is associated with many changes in the central nervous system, such as mild atrophy of the cortex that is considered non-pathological. Aging is also associated with many neurological and neurodegenerative disease such as amyotrophic lateral sclerosis, dementia, mild cognitive impairment, Parkinson's disease, and Creutzfeldt–Jakob disease.

Eva Braak German anatomist

Eva Braak (1939-2000) was a German anatomist, mostly known for the Braak and Braak Alzheimer disease stages. She was professor at the Institute of Clinical Neuroanatomy, Johann Wolfgang Goethe-University, Frankfurt am Main.

References

  1. 1 2 3 4 5 6 7 Nelson, Peter T; Dickson, Dennis W; Trojanowski, John T; Boyle, Patricia A; Arfanakis, Konstantinos; Rademakers, Rosa; Alafuzoff, Irina; Attems, Johannes; Brayne, Carol; Coyle-Gilchrist, Ian T S; Chui, Helena C; Fardo, David W; Flanagan, Margaret E; Halliday, Glenda; Hokkanen, Suvi R K; Hunter, Sally; Jicha, Gregory A; Katsumata, Yuriko; Kawas, Claudia H; Keene, C Dirk; Kovacs, Gabor G; Kukull, Walter A; Levey, Allan I; Makkinejad, Nazanin; Montine, Thomas J; Murayama, Shigeo; Murray, Melissa E; Nag, Sukriti; Rissman, Robert A; Seeley, William W; Sperling, Reisa A; White III, Charles L; Yu, Lei; Schneider, Julie A (30 April 2019). "Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report". Brain . Online first (6): 1503–1527. doi:10.1093/brain/awz099. PMC   6536849 . PMID   31039256.
  2. Nelson, Peter T.; Brayne, Carol; Flanagan, Margaret E.; Abner, Erin L.; Agrawal, Sonal; Attems, Johannes; Castellani, Rudolph J.; Corrada, Maria M.; Cykowski, Matthew D.; Di, Jing; Dickson, Dennis W. (July 2022). "Frequency of LATE neuropathologic change across the spectrum of Alzheimer's disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts". Acta Neuropathologica. 144 (1): 27–44. doi:10.1007/s00401-022-02444-1. ISSN   1432-0533. PMID   35697880. S2CID   249628141.
  3. Harrison, William T.; Lusk, Jay B.; Liu, Beiyu; Ervin, John F.; Johnson, Kim G.; Green, Cynthia L.; Wang, Shih-Hsiu J. (November 2021). "Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is independently associated with dementia and strongly associated with arteriolosclerosis in the oldest-old". Acta Neuropathologica. 142 (5): 917–919. doi:10.1007/s00401-021-02360-w. ISSN   1432-0533. PMC  8816525. PMID   34415381.
  4. 1 2 Wang, Shih-Hsiu J.; Guo, Yuanyuan; Ervin, John F.; Lusk, Jay B.; Luo, Sheng (2022-05-12). "Neuropathological associations of limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) differ between the oldest-old and younger-old". Acta Neuropathologica. 144 (1): 45–57. doi:10.1007/s00401-022-02432-5. ISSN   1432-0533. PMID   35551470. S2CID   248701133.
  5. 1 2 Nag, Sukriti; Yu, Lei; Wilson, Robert S.; Chen, Er-Yun; Bennett, David A.; Schneider, Julie A. (2017-02-14). "TDP-43 pathology and memory impairment in elders without pathologic diagnoses of AD or FTLD". Neurology. 88 (7): 653–660. doi:10.1212/WNL.0000000000003610. ISSN   1526-632X. PMC   5317379 . PMID   28087828.
  6. Braak, Heiko; Thal, Dietmar R.; Ghebremedhin, Estifanos; Del Tredici, Kelly (November 2011). "Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years". Journal of Neuropathology and Experimental Neurology. 70 (11): 960–969. doi:10.1097/NEN.0b013e318232a379. ISSN   1554-6578. PMID   22002422. S2CID   739734.
  7. Buciuc, Marina; Wennberg, Alexandra M.; Weigand, Stephen D.; Murray, Melissa E.; Senjem, Matthew L.; Spychalla, Anthony J.; Boeve, Bradley F.; Knopman, David S.; Jack, Clifford R.; Kantarci, Kejal; Parisi, Joseph E. (2020). "Effect Modifiers of TDP-43-Associated Hippocampal Atrophy Rates in Patients with Alzheimer's Disease Neuropathological Changes". Journal of Alzheimer's Disease. 73 (4): 1511–1523. doi:10.3233/JAD-191040. ISSN   1875-8908. PMC   7081101 . PMID   31929165.
  8. Nag, Sukriti; Barnes, Lisa L.; Yu, Lei; Wilson, Robert S.; Bennett, David A.; Schneider, Julie A. (2020-10-13). "Limbic-predominant age-related TDP-43 encephalopathy in Black and White decedents". Neurology. 95 (15): e2056–e2064. doi:10.1212/WNL.0000000000010602. ISSN   1526-632X. PMC   7713750 . PMID   32759188.
  9. Hunter, Sally; Hokkanen, Suvi R. K.; Keage, Hannah A. D.; Fleming, Jane; Minett, Thais; Polvikoski, Tuomo; Allinson, Kieren; Brayne, Carol; Cambridge City over 75s Cohort collaboration (2020). "TDP-43 Related Neuropathologies and Phosphorylation State: Associations with Age and Clinical Dementia in the Cambridge City over-75s Cohort". Journal of Alzheimer's Disease. 75 (1): 337–350. doi:10.3233/JAD-191093. ISSN   1875-8908. PMID   32280087. S2CID   215748586.
  10. 1 2 Karanth, Shama; Nelson, Peter T.; Katsumata, Yuriko; Kryscio, Richard J.; Schmitt, Frederick A.; Fardo, David W.; Cykowski, Matthew D.; Jicha, Gregory A.; Van Eldik, Linda J.; Abner, Erin L. (2020-10-01). "Prevalence and Clinical Phenotype of Quadruple Misfolded Proteins in Older Adults". JAMA Neurology. 77 (10): 1299–1307. doi:10.1001/jamaneurol.2020.1741. ISSN   2168-6157. PMC   7309572 . PMID   32568358.
  11. Josephs, Keith A.; Whitwell, Jennifer L.; Tosakulwong, Nirubol; Weigand, Stephen D.; Murray, Melissa E.; Liesinger, Amanda M.; Petrucelli, Leonard; Senjem, Matthew L.; Ivnik, Robert J.; Parisi, Joseph E.; Petersen, Ronald C. (November 2015). "TAR DNA-binding protein 43 and pathological subtype of Alzheimer's disease impact clinical features". Annals of Neurology. 78 (5): 697–709. doi:10.1002/ana.24493. ISSN   1531-8249. PMC   4623932 . PMID   26224156.
  12. Josephs, Keith A.; Dickson, Dennis W.; Tosakulwong, Nirubol; Weigand, Stephen D.; Murray, Melissa E.; Petrucelli, Leonard; Liesinger, Amanda M.; Senjem, Matthew L.; Spychalla, Anthony J.; Knopman, David S.; Parisi, Joseph E. (November 2017). "Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer's disease: a longitudinal retrospective study". The Lancet. Neurology. 16 (11): 917–924. doi:10.1016/S1474-4422(17)30284-3. ISSN   1474-4465. PMC   5646369 . PMID   28919059.
  13. Katsumata, Yuriko; Abner, Erin L.; Karanth, Shama; Teylan, Merilee A.; Mock, Charles N.; Cykowski, Matthew D.; Lee, Edward B.; Boehme, Kevin L.; Mukherjee, Shubhabrata; Kauwe, John S. K.; Kryscio, Richard J. (November 2020). "Distinct clinicopathologic clusters of persons with TDP-43 proteinopathy". Acta Neuropathologica. 140 (5): 659–674. doi:10.1007/s00401-020-02211-0. ISSN   1432-0533. PMC   7572241 . PMID   32797255.
  14. Nelson, Peter T. (2021-08-11). "LATE Neuropathologic Changes with Little or No Alzheimer Disease is Common and is Associated with Cognitive Impairment but Not Frontotemporal Dementia". Journal of Neuropathology and Experimental Neurology. 80 (7): 649–651. doi:10.1093/jnen/nlab050. ISSN   1554-6578. PMC   8357339 . PMID   34270750.
  15. Amador-Ortiz, Catalina; Ahmed, Zeshan; Zehr, Cynthia; Dickson, Dennis W. (March 2007). "Hippocampal sclerosis dementia differs from hippocampal sclerosis in frontal lobe degeneration". Acta Neuropathologica. 113 (3): 245–252. doi:10.1007/s00401-006-0183-4. ISSN   0001-6322. PMC   1794627 . PMID   17195931.
  16. Josephs, Keith A.; Murray, Melissa E.; Whitwell, Jennifer L.; Tosakulwong, Nirubol; Weigand, Stephen D.; Petrucelli, Leonard; Liesinger, Amanda M.; Petersen, Ronald C.; Parisi, Joseph E.; Dickson, Dennis W. (April 2016). "Updated TDP-43 in Alzheimer's disease staging scheme". Acta Neuropathologica. 131 (4): 571–585. doi:10.1007/s00401-016-1537-1. ISSN   1432-0533. PMC   5946692 . PMID   26810071.
  17. 1 2 Amador-Ortiz, Catalina; Lin, Wen-Lang; Ahmed, Zeshan; Personett, David; Davies, Peter; Duara, Ranjan; Graff-Radford, Neill R.; Hutton, Michael L.; Dickson, Dennis W. (May 2007). "TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease". Annals of Neurology. 61 (5): 435–445. doi:10.1002/ana.21154. ISSN   0364-5134. PMC   2677204 . PMID   17469117.
  18. Nelson, Peter T.; Abner, Erin L.; Schmitt, Frederick A.; Kryscio, Richard J.; Jicha, Gregory A.; Smith, Charles D.; Davis, Daron G.; Poduska, John W.; Patel, Ela; Mendiondo, Marta S.; Markesbery, William R. (January 2010). "Modeling the association between 43 different clinical and pathological variables and the severity of cognitive impairment in a large autopsy cohort of elderly persons". Brain Pathology (Zurich, Switzerland). 20 (1): 66–79. doi:10.1111/j.1750-3639.2008.00244.x. ISSN   1750-3639. PMC   2864342 . PMID   19021630.
  19. Dickson, D. W.; Davies, P.; Bevona, C.; Van Hoeven, K. H.; Factor, S. M.; Grober, E.; Aronson, M. K.; Crystal, H. A. (1994). "Hippocampal sclerosis: a common pathological feature of dementia in very old (> or = 80 years of age) humans". Acta Neuropathologica. 88 (3): 212–221. doi:10.1007/BF00293396. ISSN   0001-6322. PMID   7810292. S2CID   6265307.
  20. Hokkanen, Suvi R. K.; Hunter, Sally; Polvikoski, Tuomo M.; Keage, Hannah A. D.; Minett, Thais; Matthews, Fiona E.; Brayne, Carol; MRC CFAS and CC75C Study Group (July 2018). "Hippocampal sclerosis, hippocampal neuron loss patterns and TDP-43 in the aged population". Brain Pathology (Zurich, Switzerland). 28 (4): 548–559. doi:10.1111/bpa.12556. ISSN   1750-3639. PMC   6099461 . PMID   28833898.
  21. Spina, Salvatore; La Joie, Renaud; Petersen, Cathrine; Nolan, Amber L.; Cuevas, Deion; Cosme, Celica; Hepker, Mackenzie; Hwang, Ji-Hye; Miller, Zachary A.; Huang, Eric J.; Karydas, Anna M. (2021-08-17). "Comorbid neuropathological diagnoses in early versus late-onset Alzheimer's disease". Brain: A Journal of Neurology. 144 (7): 2186–2198. doi:10.1093/brain/awab099. ISSN   1460-2156. PMC   8502474 . PMID   33693619.
  22. Zarow, Chris; Weiner, Michael W.; Ellis, William G.; Chui, Helena Chang (July 2012). "Prevalence, laterality, and comorbidity of hippocampal sclerosis in an autopsy sample". Brain and Behavior. 2 (4): 435–442. doi:10.1002/brb3.66. ISSN   2162-3279. PMC   3432966 . PMID   22950047.
  23. Makkinejad, Nazanin; Schneider, Julie A.; Yu, Junxiao; Leurgans, Sue E.; Kotrotsou, Aikaterini; Evia, Arnold M.; Bennett, David A.; Arfanakis, Konstantinos (May 2019). "Associations of amygdala volume and shape with transactive response DNA-binding protein 43 (TDP-43) pathology in a community cohort of older adults". Neurobiology of Aging. 77: 104–111. doi:10.1016/j.neurobiolaging.2019.01.022. ISSN   1558-1497. PMC   6486844 . PMID   30784812.
  24. Nelson, Peter T.; Schmitt, Frederick A.; Lin, Yushun; Abner, Erin L.; Jicha, Gregory A.; Patel, Ela; Thomason, Paula C.; Neltner, Janna H.; Smith, Charles D.; Santacruz, Karen S.; Sonnen, Joshua A. (May 2011). "Hippocampal sclerosis in advanced age: clinical and pathological features". Brain: A Journal of Neurology. 134 (Pt 5): 1506–1518. doi:10.1093/brain/awr053. ISSN   1460-2156. PMC   3097889 . PMID   21596774.
  25. Dickson, Dennis W.; Baker, Matthew; Rademakers, Rosa (2010). "Common variant in GRN is a genetic risk factor for hippocampal sclerosis in the elderly". Neuro-Degenerative Diseases. 7 (1–3): 170–174. doi:10.1159/000289231. ISSN   1660-2862. PMC   2859236 . PMID   20197700.
  26. Murray, Melissa E.; Cannon, Ashley; Graff-Radford, Neill R.; Liesinger, Amanda M.; Rutherford, Nicola J.; Ross, Owen A.; Duara, Ranjan; Carrasquillo, Minerva M.; Rademakers, Rosa; Dickson, Dennis W. (September 2014). "Differential clinicopathologic and genetic features of late-onset amnestic dementias". Acta Neuropathologica. 128 (3): 411–421. doi:10.1007/s00401-014-1302-2. ISSN   1432-0533. PMC   4412022 . PMID   24899141.
  27. Nelson, Peter T.; Estus, Steven; Abner, Erin L.; Parikh, Ishita; Malik, Manasi; Neltner, Janna H.; Ighodaro, Eseosa; Wang, Wang-Xia; Wilfred, Bernard R.; Wang, Li-San; Kukull, Walter A. (2014). "ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology". Acta Neuropathologica. 127 (6): 825–843. doi:10.1007/s00401-014-1282-2. ISSN   1432-0533. PMC   4113197 . PMID   24770881.
  28. Dugan, Adam J.; Nelson, Peter T.; Katsumata, Yuriko; Shade, Lincoln M. P.; Boehme, Kevin L.; Teylan, Merilee A.; Cykowski, Matthew D.; Mukherjee, Shubhabrata; Kauwe, John S. K.; Hohman, Timothy J.; Schneider, Julie A. (2021-09-15). "Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study". Acta Neuropathologica Communications. 9 (1): 152. doi:10.1186/s40478-021-01250-2. ISSN   2051-5960. PMC   8442328 . PMID   34526147.
  29. Yang, Hyun-Sik; Yu, Lei; White, Charles C.; Chibnik, Lori B.; Chhatwal, Jasmeer P.; Sperling, Reisa A.; Bennett, David A.; Schneider, Julie A.; De Jager, Philip L. (September 2018). "Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study". The Lancet. Neurology. 17 (9): 773–781. doi:10.1016/S1474-4422(18)30251-5. ISSN   1474-4465. PMC   6154505 . PMID   30093249.
  30. Beecham, Gary W.; Hamilton, Kara; Naj, Adam C.; Martin, Eden R.; Huentelman, Matt; Myers, Amanda J.; Corneveaux, Jason J.; Hardy, John; Vonsattel, Jean-Paul; Younkin, Steven G.; Bennett, David A. (September 2014). "Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias". PLOS Genetics. 10 (9): e1004606. doi:10.1371/journal.pgen.1004606. ISSN   1553-7404. PMC   4154667 . PMID   25188341.
  31. Dugan, Adam J.; Nelson, Peter T.; Katsumata, Yuriko; Shade, Lincoln M. P.; Teylan, Merilee A.; Boehme, Kevin L.; Mukherjee, Shubhabrata; Kauwe, John S. K.; Hohman, Timothy J.; Schneider, Julie A.; Alzheimer's Disease Genetics Consortium (2021-10-29). "Association between WWOX/MAF variants and dementia-related neuropathologic endophenotypes". Neurobiology of Aging. 111: 95–106. doi:10.1016/j.neurobiolaging.2021.10.011. ISSN   0197-4580. PMC  8761217. PMID   34852950. S2CID   240120472.
  32. Chen, Han-Jou; Mitchell, Jacqueline C. (2021-06-02). "Mechanisms of TDP-43 Proteinopathy Onset and Propagation". International Journal of Molecular Sciences. 22 (11): 6004. doi: 10.3390/ijms22116004 . ISSN   1422-0067. PMC   8199531 . PMID   34199367.
  33. Gendron, Tania F.; Rademakers, Rosa; Petrucelli, Leonard (2013). "TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43". Journal of Alzheimer's Disease. 33 Suppl 1: S35–45. doi:10.3233/JAD-2012-129036. ISSN   1875-8908. PMC   3532959 . PMID   22751173.
  34. 1 2 Neumann, Manuela; Sampathu, Deepak M.; Kwong, Linda K.; Truax, Adam C.; Micsenyi, Matthew C.; Chou, Thomas T.; Bruce, Jennifer; Schuck, Theresa; Grossman, Murray; Clark, Christopher M.; McCluskey, Leo F. (2006-10-06). "Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis". Science. 314 (5796): 130–133. Bibcode:2006Sci...314..130N. doi:10.1126/science.1134108. ISSN   1095-9203. PMID   17023659. S2CID   8620103.
  35. "Newly recognized form of dementia could now be easier to diagnose". New Scientist . 30 April 2019. Retrieved 30 April 2019.
  36. Chornenkyy, Yevgen; Fardo, David W.; Nelson, Peter T. (July 2019). "Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy". Laboratory Investigation. 99 (7): 993–1007. doi:10.1038/s41374-019-0196-y. ISSN   1530-0307. PMC   6609463 . PMID   30742063.

Further reading