Linker (computing)

Last updated

An illustration of the linking process. Object files and static libraries are assembled into a new library or executable Linker.svg
An illustration of the linking process. Object files and static libraries are assembled into a new library or executable

In computing, a linker or link editor is a computer system program that takes one or more object files (generated by a compiler or an assembler) and combines them into a single executable file, library file, or another "object" file.

Contents

A simpler version that writes its output directly to memory is called the loader, though loading is typically considered a separate process. [1] [2]

Overview

Computer programs typically are composed of several parts or modules; these parts/modules do not need to be contained within a single object file, and in such cases refer to each other using symbols as addresses into other modules, which are mapped into memory addresses when linked for execution.

While the process of linking is meant to ultimately combine these independent parts, there are many good reasons to develop those separately at the source-level. Among these reasons are the ease of organizing several smaller pieces over a monolithic whole and the ability to better define the purpose and responsibilities of each individual piece, which is essential for managing complexity and increasing long-term maintainability in software architecture.

Typically, an object file can contain three kinds of symbols:

For most compilers, each object file is the result of compiling one input source code file. When a program comprises multiple object files, the linker combines these files into a unified executable program, resolving the symbols as it goes along.

Linkers can take objects from a collection called a library or runtime library. Most linkers do not include all the object files in a static library in the output executable; they include only those object files from the library that are referenced by other object files or libraries directly or indirectly. But for a shared library, the entire library has to be loaded during runtime as it is not known which functions or methods will be called during runtime. Library linking may thus be an iterative process, with some referenced modules requiring additional modules to be linked, and so on. Libraries exist for diverse purposes, and one or more system libraries are usually linked in by default.

The linker also takes care of arranging the objects in a program's address space. This may involve relocating code that assumes a specific base address into another base. Since a compiler seldom knows where an object will reside, it often assumes a fixed base location (for example, zero). Relocating machine code may involve re-targeting absolute jumps, loads, and stores.

The executable output by the linker may need another relocation pass when it is finally loaded into memory (just before execution). This pass is usually omitted on hardware offering virtual memory: every program is put into its own address space, so there is no conflict even if all programs load at the same base address. This pass may also be omitted if the executable is a position independent executable.

On some Unix variants, such as SINTRAN III, the process performed by a linker (assembling object files into a program) was called loading (as in loading executable code onto a file). [3] Additionally, in some operating systems, the same program handles both the jobs of linking and loading a program (dynamic linking).

Dynamic linking

Many operating system environments allow dynamic linking, deferring the resolution of some undefined symbols until a program is run. That means that the executable code still contains undefined symbols, plus a list of objects or libraries that will provide definitions for these. Loading the program will load these objects/libraries as well, and perform a final linking.

This approach offers two advantages:

There are also disadvantages:

Contained or virtual environments may further allow system administrators to mitigate or trade-off these individual pros and cons.

Static linking

Static linking is the result of the linker copying all library routines used in the program into the executable image. This may require more disk space and memory than dynamic linking, but is more portable, since it does not require the presence of the library on the system where it runs. Static linking also prevents "DLL hell", since each program includes exactly the versions of library routines that it requires, with no conflict with other programs. A program using just a few routines from a library does not require the entire library to be installed.

Relocation

As the compiler has no information on the layout of objects in the final output, it cannot take advantage of shorter or more efficient instructions that place a requirement on the address of another object. For example, a jump instruction can reference an absolute address or an offset from the current location, and the offset could be expressed with different lengths depending on the distance to the target. By first generating the most conservative instruction (usually the largest relative or absolute variant, depending on platform) and adding relaxation hints, it is possible to substitute shorter or more efficient instructions during the final link. In regard to jump optimizations this is also called automatic jump-sizing. [4] This step can be performed only after all input objects have been read and assigned temporary addresses; the linker relaxation pass subsequently reassigns addresses, which may in turn allow more potential relaxations to occur. In general, the substituted sequences are shorter, which allows this process to always converge on the best solution given a fixed order of objects; if this is not the case, relaxations can conflict, and the linker needs to weigh the advantages of either option.

While instruction relaxation typically occurs at link-time, inner-module relaxation can already take place as part of the optimizing process at compile-time. In some cases, relaxation can also occur at load-time as part of the relocation process or combined with dynamic dead-code elimination techniques.

Linkage editor

In IBM System/360 mainframe environments such as OS/360, including z/OS for the z/Architecture mainframes, this type of program is known as a linkage editor. As the name implies a linkage editor has the additional capability of allowing the addition, replacement, and/or deletion of individual program sections. Operating systems such as OS/360 have format for executable load-modules containing supplementary data about the component sections of a program, so that an individual program section can be replaced, and other parts of the program updated so that relocatable addresses and other references can be corrected by the linkage editor, as part of the process.

One advantage of this is that it allows a program to be maintained without having to keep all of the intermediate object files, or without having to re-compile program sections that haven't changed. It also permits program updates to be distributed in the form of small files (originally card decks), containing only the object module to be replaced. In such systems, object code is in the form and format of 80-byte punched-card images, so that updates can be introduced into a system using that medium. In later releases of OS/360 and in subsequent systems, load-modules contain additional data about versions of components modules, to create a traceable record of updates. It also allows one to add, change, or remove an overlay structure from an already linked load module.

The term "linkage editor" should not be construed as implying that the program operates in a user-interactive mode like a text editor. It is intended for batch-mode execution, with the editing commands being supplied by the user in sequentially organized files, such as punched cards, DASD, or magnetic tape.

Linkage editing (IBM nomenclature) or consolidation or collection (ICL nomenclature) refers to the linkage editor's or consolidator's act of combining the various pieces into a relocatable binary, whereas the loading and relocation into an absolute binary at the target address is normally considered a separate step. [2]

Linker control scripts

In the beginning linkers gave users very limited control over the arrangement of generated output object files. As the target systems became complex with different memory requirements such as embedded systems, it became necessary to give users control to generate output object files with their specific requirements such as defining base addresses' of segments. Linkers control scripts were used for this.

Common implementations

On Unix and Unix-like systems, the linker is known as "ld". Origins of the name "ld" are "LoaDer" and "Link eDitor". The term "loader" was used to describe the process of loading external symbols from other programs during the process of linking. [5]

GNU linker

The GNU linker (or GNU ld) is the GNU Project's free software implementation of the Unix command ld. GNU ld runs the linker, which creates an executable file (or a library) from object files created during compilation of a software project. A linker script may be passed to GNU ld to exercise greater control over the linking process. [6] The GNU linker is part of the GNU Binary Utilities (binutils). Two versions of ld are provided in binutils: the traditional GNU ld based on bfd, and a "streamlined" ELF-only version called gold.

The command-line and linker script syntaxes of GNU ld is the de facto standard in much of the Unix-like world. The LLVM project's linker, lld, is designed to be drop-in compatible, [7] and may be used directly with the GNU compiler. Another drop-in replacement, mold, is a highly parallelized and faster alternative which is also supported by GNU tools. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Executable and Linkable Format</span> Standard file format for executables, object code, shared libraries, and core dumps.

In computing, the Executable and Linkable Format is a common standard file format for executable files, object code, shared libraries, and core dumps. First published in the specification for the application binary interface (ABI) of the Unix operating system version named System V Release 4 (SVR4), and later in the Tool Interface Standard, it was quickly accepted among different vendors of Unix systems. In 1999, it was chosen as the standard binary file format for Unix and Unix-like systems on x86 processors by the 86open project.

The Portable Executable (PE) format is a file format for executables, object code, DLLs and others used in 32-bit and 64-bit versions of Windows operating systems, and in UEFI environments. The PE format is a data structure that encapsulates the information necessary for the Windows OS loader to manage the wrapped executable code. This includes dynamic library references for linking, API export and import tables, resource management data and thread-local storage (TLS) data. On NT operating systems, the PE format is used for EXE, DLL, SYS, MUI and other file types. The Unified Extensible Firmware Interface (UEFI) specification states that PE is the standard executable format in EFI environments.

<span class="mw-page-title-main">Library (computing)</span> Collection of resources used to develop a computer program

In computer science, a library is a collection of resources that is leveraged during software development to implement a computer program.

An object file is a file that contains machine code or bytecode, as well as other data and metadata, generated by a compiler or assembler from source code during the compilation or assembly process. The machine code that is generated is known as object code.

In computer science, a symbol table is a data structure used by a language translator such as a compiler or interpreter, where each identifier, constant, procedure and function in a program's source code is associated with information relating to its declaration or appearance in the source. In other words, the entries of a symbol table store the information related to the entry's corresponding symbol.

In computer systems a loader is the part of an operating system that is responsible for loading programs and libraries. It is one of the essential stages in the process of starting a program, as it places programs into memory and prepares them for execution. Loading a program involves either memory-mapping or copying the contents of the executable file containing the program instructions into memory, and then carrying out other required preparatory tasks to prepare the executable for running. Once loading is complete, the operating system starts the program by passing control to the loaded program code.

In computing, position-independent code (PIC) or position-independent executable (PIE) is a body of machine code that executes properly regardless of its memory address. PIC is commonly used for shared libraries, so that the same library code can be loaded at a location in each program's address space where it does not overlap with other memory in use by, for example, other shared libraries. PIC was also used on older computer systems that lacked an MMU, so that the operating system could keep applications away from each other even within the single address space of an MMU-less system.

An intermediate representation (IR) is the data structure or code used internally by a compiler or virtual machine to represent source code. An IR is designed to be conducive to further processing, such as optimization and translation. A "good" IR must be accurate – capable of representing the source code without loss of information – and independent of any particular source or target language. An IR may take one of several forms: an in-memory data structure, or a special tuple- or stack-based code readable by the program. In the latter case it is also called an intermediate language.

Relocation is the process of assigning load addresses for position-dependent code and data of a program and adjusting the code and data to reflect the assigned addresses. Prior to the advent of multiprocess systems, and still in many embedded systems, the addresses for objects are absolute starting at a known location, often zero. Since multiprocessing systems dynamically link and switch between programs it became necessary to be able to relocate objects using position-independent code. A linker usually performs relocation in conjunction with symbol resolution, the process of searching files and libraries to replace symbolic references or names of libraries with actual usable addresses in memory before running a program.

A static build is a compiled version of a program which has been statically linked against libraries.

In computer science, a static library or statically linked library is a set of routines, external functions and variables which are resolved in a caller at compile-time and copied into a target application by a compiler, linker, or binder, producing an object file and a stand-alone executable. This executable and the process of compiling it are both known as a static build of the program. Historically, libraries could only be static. Static libraries are either merged with other static libraries and object files during building/linking to form a single executable or loaded at run-time into the address space of their corresponding executable at a static memory offset determined at compile-time/link-time.

A dynamic-link library (DLL) is a shared library in the Microsoft Windows or OS/2 operating system.

In computing, a dynamic linker is the part of an operating system that loads and links the shared libraries needed by an executable when it is executed, by copying the content of libraries from persistent storage to RAM, filling jump tables and relocating pointers. The specific operating system and executable format determine how the dynamic linker functions and how it is implemented.

In Unix, Plan 9, and Unix-like operating systems, the strip program is a command-line utility used to remove non-essential information from executable binary programs and object files. This information, which is not required for execution, typically includes debugging data, symbol tables, relocation information, and other metadata. Its primary purpose is to reduce the file size of the binary executable and potentially increase performance. The output of this process is known as a stripped binary.

In computer programming, DLL injection is a technique used for running code within the address space of another process by forcing it to load a dynamic-link library. DLL injection is often used by external programs to influence the behavior of another program in a way its authors did not anticipate or intend. For example, the injected code could hook system function calls, or read the contents of password textboxes, which cannot be done the usual way. A program used to inject arbitrary code into arbitrary processes is called a DLL injector.

A weak symbol denotes a specially annotated symbol during linking of Executable and Linkable Format (ELF) object files. By default, without any annotation, a symbol in an object file is strong. During linking, a strong symbol can override a weak symbol of the same name. In contrast, in the presence of two strong symbols by the same name, the linker resolves the symbol in favor of the first one found. This behavior allows an executable to override standard library functions, such as malloc(3). When linking a binary executable, a weakly declared symbol does not need a definition. In comparison, a declared strong symbol without a definition triggers an undefined symbol link error.

A debug symbol is a special kind of symbol that attaches additional information to the symbol table of an object file, such as a shared library or an executable. This information allows a symbolic debugger to gain access to information from the source code of the binary, such as the names of identifiers, including variables and routines.

Dynamic loading is a mechanism by which a computer program can, at run time, load a library into memory, retrieve the addresses of functions and variables contained in the library, execute those functions or access those variables, and unload the library from memory. It is one of the three mechanisms by which a computer program can use some other software within the program; the others are static linking and dynamic linking. Unlike static linking and dynamic linking, dynamic loading allows a computer program to start up in the absence of these libraries, to discover available libraries, and to potentially gain additional functionality.

The OS/360 Object File Format is the standard object module file format for the IBM DOS/360, OS/360 and VM/370, Univac VS/9, and Fujitsu BS2000 mainframe operating systems. In the 1990s, the format was given an extension with the XSD-type record for the MVS Operating System to support longer module names in the C Programming Language. This format is still in use by the z/VSE operating system. In contrast, it has been superseded by the GOFF file format on the MVS Operating System and on the z/VM Operating System. Since the MVS and z/VM loaders will still handle this older format, some compilers have chosen to continue to produce this format instead of the newer GOFF format.

The GOFF specification was developed for IBM's MVS operating system to supersede the IBM OS/360 Object File Format to compensate for weaknesses in the older format.

References

  1. IBM OS Linkage Editor and Loader (PDF). IBM Corporation. 1972. Archived (PDF) from the original on 2020-03-06. Retrieved 2020-03-07.
  2. 1 2 Barron, David William (1978) [1971, 1969]. "5.7. Linkage editors and consolidators". Written at University of Southampton, Southampton, UK. In Floretin, J. John (ed.). Assemblers and Loaders. Computer Monographs (3 ed.). New York, US: Elsevier North-Holland Inc. pp. 65–66. ISBN   0-444-19462-2. LCCN   78-19961. (xii+100 pages)
  3. BRF-LINKER User Manual. August 1984. ND-60.196.01.
  4. Salomon, David (February 1993) [1992]. "8.2.3 Automatic jump-sizing" (PDF). Written at California State University, Northridge, California, US. In Chivers, Ian D. (ed.). Assemblers and Loaders. Ellis Horwood Series In Computers And Their Applications (1 ed.). Chicester, West Sussex, UK: Ellis Horwood Limited / Simon & Schuster International Group. pp. 237–238. ISBN   0-13-052564-2. Archived (PDF) from the original on 2020-03-23. Retrieved 2008-10-01. (xiv+294+4 pages)
  5. "1. ld". UNIX PROGRAMMER'S MANUAL (6 ed.). May 1975.
  6. "GNU Binutils: Linker Scripts". 2018-07-18. Archived from the original on 2020-03-06. Retrieved 2019-01-18.
  7. "LLD - The LLVM Linker — lld 14 documentation". lld.llvm.org.
  8. "GCC 12 Adds Support For Using The Mold Linker". www.phoronix.com.

Further reading